dc.contributor.author |
Agarwal, RP |
en |
dc.contributor.author |
Filippakis, ME |
en |
dc.contributor.author |
O'Regan, D |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:57:38Z |
|
dc.date.available |
2014-03-01T01:57:38Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1345-4773 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28458 |
|
dc.subject |
p-Laplacian |
en |
dc.subject |
Neumann problem |
en |
dc.subject |
(S)(+)-operator |
en |
dc.subject |
degree map |
en |
dc.subject |
local minimizer |
en |
dc.subject |
nonlinear Green's identity |
en |
dc.subject |
homotopy invariance property |
en |
dc.subject.other |
LINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
EIGENVALUE PROBLEMS |
en |
dc.subject.other |
MULTIPLE SOLUTIONS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
OPERATORS |
en |
dc.title |
TWIN POSITIVE SOLUTIONS FOR p-LAPLACIAN NONLINEAR NEUMANN PROBLEMS VIA VARIATIONAL AND DEGREE THEORETICAL METHODS |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We consider a nonlinear Neumann problem driven by the p-Laplacian and with a nonsmooth potential function (hemivariational inequality). Using a combination of variational and degree theoretic techniques, we show that the problem has two positive smooth solutions. We also show the equivalence of W-n(1,p) and C-n(1) minimizers for a large class of locally Lipschitz functionals. |
en |
heal.publisher |
YOKOHAMA PUBL |
en |
heal.journalName |
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS |
en |
dc.identifier.isi |
ISI:000267419500001 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
23 |
en |