dc.contributor.author |
Dieckmann, ME |
en |
dc.contributor.author |
Meli, A |
en |
dc.contributor.author |
Shukla, PK |
en |
dc.contributor.author |
Drury, LOC |
en |
dc.contributor.author |
Mastichiadis, A |
en |
dc.date.accessioned |
2014-03-01T01:57:38Z |
|
dc.date.available |
2014-03-01T01:57:38Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0741-3335 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28459 |
|
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.classification |
Physics, Nuclear |
en |
dc.subject.other |
MAGNETIC-FIELD GENERATION |
en |
dc.subject.other |
PARTICLE-ACCELERATION |
en |
dc.subject.other |
ELECTRON ACCELERATION |
en |
dc.subject.other |
COLLISIONLESS SHOCKS |
en |
dc.subject.other |
COSMIC-RAYS |
en |
dc.subject.other |
2-STREAM INSTABILITY |
en |
dc.subject.other |
DYNAMICS |
en |
dc.subject.other |
WAVES |
en |
dc.subject.other |
AMPLIFICATION |
en |
dc.subject.other |
REFORMATION |
en |
dc.title |
Two-dimensional PIC simulations of ion beam instabilities in Supernova-driven plasma flows |
en |
heal.type |
journalArticle |
en |
heal.identifier.secondary |
065020 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Supernova remnant blast shells can reach the flow speed v(s) = 0.1c and shocks form at its front. Instabilities driven by shock-reflected ion beams heat the plasma in the foreshock, which may inject particles into diffusive acceleration. The ion beams can have the speed v(b) approximate to v(s). For v(b) << v(s) the Buneman or upper-hybrid instabilities dominate, while for v(b) >> v(s) the filamentation and mixed modes grow faster. Here the relevant waves for v(b) approximate to vs are examined and how they interact nonlinearly with the particles. The collision of two plasma clouds at the speed v(s) is modelled with particle-in-cell simulations, which convect with them magnetic fields oriented perpendicular to their flow velocity vector. One simulation models equally dense clouds and the other one uses a density ratio of 2. Both simulations show upper-hybrid waves that are planar over large spatial intervals and that accelerate electrons to similar to 10 keV. The symmetric collision yields only short oscillatory wave pulses, while the asymmetric collision also produces large-scale electric fields, probably through a magnetic pressure gradient. The large-scale fields destroy the electron phase space holes and they accelerate the ions, which facilitates the formation of a precursor shock. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
PLASMA PHYSICS AND CONTROLLED FUSION |
en |
dc.identifier.isi |
ISI:000256544000021 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.issue |
6 |
en |