dc.contributor.author |
Papadopoulos, P |
en |
dc.contributor.author |
Stavrakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:57:43Z |
|
dc.date.available |
2014-03-01T01:57:43Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28494 |
|
dc.subject |
Blow Up |
en |
dc.subject |
Degeneration |
en |
dc.subject |
Global Existence |
en |
dc.subject |
Global Solution |
en |
dc.subject |
Lp Space |
en |
dc.subject |
Nonlinear Wave Equation |
en |
dc.subject |
Quasilinear Hyperbolic Equation |
en |
dc.subject |
Quasilinear Wave Equation |
en |
dc.subject |
sobolev space |
en |
dc.subject |
Unbounded Domain |
en |
dc.title |
Blow-up for a non-degenerate non-local quasilinear wave equation on IRN |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00036810903114783 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00036810903114783 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We study the global existence, decay properties and blow-up re- sults of the solution for the following non-degenerate nonlinear wave equation utt + (p + b (x)|| 5 u(t)||2 )( ) u + u t = |u|au, x 2 IRN, t 0, u(x,0) = u0(x), ut(x,0) = u1(x), x 2 IRN, |
en |
heal.journalName |
Applicable Analysis |
en |
dc.identifier.doi |
10.1080/00036810903114783 |
en |