HEAL DSpace

Expeditive Extensions of Evolutionary Bayesian Probabilistic Neural Networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiou, V en
dc.contributor.author Malefaki, S en
dc.contributor.author Parsopoulos, K en
dc.contributor.author Alevizos, P en
dc.contributor.author Vrahatis, M en
dc.date.accessioned 2014-03-01T01:57:49Z
dc.date.available 2014-03-01T01:57:49Z
dc.date.issued 2009 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/28544
dc.subject bayesian model en
dc.subject Benchmark Problem en
dc.subject Classification Accuracy en
dc.subject particle swarm optimizer en
dc.subject Perforation en
dc.subject Probabilistic Neural Network en
dc.title Expeditive Extensions of Evolutionary Bayesian Probabilistic Neural Networks en
heal.type journalArticle en
heal.identifier.primary 10.1007/978-3-642-11169-3_3 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-11169-3_3 en
heal.publicationDate 2009 en
heal.abstract Probabilistic Neural Networks (PNNs) constitute a promis- ing methodology for classification and prediction tasks. Their perfor- mance depends heavily on several factors, such as their spread param- eters, kernels, and prior probabilities. Recently, Evolutionary Bayesian PNNs were proposed to address this problem by incorporating Bayesian models for estimation of spread parameters, as well as Particle Swarm Optimization (PSO) as a en
dc.identifier.doi 10.1007/978-3-642-11169-3_3 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής