dc.contributor.author |
Georgiou, V |
en |
dc.contributor.author |
Malefaki, S |
en |
dc.contributor.author |
Parsopoulos, K |
en |
dc.contributor.author |
Alevizos, P |
en |
dc.contributor.author |
Vrahatis, M |
en |
dc.date.accessioned |
2014-03-01T01:57:49Z |
|
dc.date.available |
2014-03-01T01:57:49Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28544 |
|
dc.subject |
bayesian model |
en |
dc.subject |
Benchmark Problem |
en |
dc.subject |
Classification Accuracy |
en |
dc.subject |
particle swarm optimizer |
en |
dc.subject |
Perforation |
en |
dc.subject |
Probabilistic Neural Network |
en |
dc.title |
Expeditive Extensions of Evolutionary Bayesian Probabilistic Neural Networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/978-3-642-11169-3_3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-11169-3_3 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Probabilistic Neural Networks (PNNs) constitute a promis- ing methodology for classification and prediction tasks. Their perfor- mance depends heavily on several factors, such as their spread param- eters, kernels, and prior probabilities. Recently, Evolutionary Bayesian PNNs were proposed to address this problem by incorporating Bayesian models for estimation of spread parameters, as well as Particle Swarm Optimization (PSO) as a |
en |
dc.identifier.doi |
10.1007/978-3-642-11169-3_3 |
en |