dc.contributor.author | Apatsidis, D | en |
dc.contributor.author | Argyros, S | en |
dc.contributor.author | Kanellopoulos, V | en |
dc.date.accessioned | 2014-03-01T01:57:51Z | |
dc.date.available | 2014-03-01T01:57:51Z | |
dc.date.issued | 2009 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/28562 | |
dc.relation.uri | http://arxiv.org/abs/0903.2809 | en |
dc.subject | banach space | en |
dc.subject | Function Space | en |
dc.subject | hausdorff measure | en |
dc.subject | Quadratic Variation | en |
dc.subject | Stopping Time | en |
dc.title | Hausdorff Measures and Functions of Bounded Quadratic Variation | en |
heal.type | journalArticle | en |
heal.publicationDate | 2009 | en |
heal.abstract | To each function $f$ of bounded quadratic variation ($f\in V_2$) we associatea Hausdorff measure $\mu_f$. We show that the map $f\to\mu_f$ is locallyLipschitz and onto the positive cone of $\mathcal{M}[0,1]$. We use the measures$\{\mu_f:f\in V_2\}$ to determine the structure of the subspaces of $V_2^0$which either contain $c_0$ or the square stopping time space $S^2$. | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |