dc.contributor.author |
Papathanasiou, N |
en |
dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T01:58:01Z |
|
dc.date.available |
2014-03-01T01:58:01Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28601 |
|
dc.relation.uri |
http://arxiv.org/abs/0907.3859 |
en |
dc.subject |
Condition Number |
en |
dc.subject |
Distance Measure |
en |
dc.subject |
Eigenvalue Problem |
en |
dc.subject |
Eigenvalues |
en |
dc.subject |
Eigenvectors |
en |
dc.subject |
Matrix Polynomial |
en |
dc.subject |
Perturbation Bound |
en |
dc.subject |
Perturbation Theory |
en |
dc.subject |
Polynomial Eigenvalue Problem |
en |
dc.subject |
Upper Bound |
en |
dc.subject |
Growth Rate |
en |
dc.title |
On condition numbers of polynomial eigenvalue problems with nonsingular leading coefficients |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper, we investigate condition numbers of eigenvalue problems ofmatrix polynomials with nonsingular leading coefficients, generalizingclassical results of matrix perturbation theory. We provide a relation betweenthe condition numbers of eigenvalues and the pseudospectral growth rate. Weobtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned insome respects, then it is close to |
en |