dc.contributor.author |
Karantzalos, K |
en |
dc.contributor.author |
Paragios, N |
en |
dc.date.accessioned |
2014-03-01T01:58:05Z |
|
dc.date.available |
2014-03-01T01:58:05Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28630 |
|
dc.subject |
Building Detection |
en |
dc.subject |
Building Extraction |
en |
dc.subject |
Image Segmentation |
en |
dc.subject |
Level Set |
en |
dc.subject |
Object Detection |
en |
dc.subject |
Optical Imaging |
en |
dc.subject |
Quantitative Evaluation |
en |
dc.subject |
Remote Sensing |
en |
dc.subject |
Remote Sensing Data |
en |
dc.subject |
Satellite Image |
en |
dc.subject |
Shape Priors |
en |
dc.subject |
Variational Method |
en |
dc.title |
Recognition-Driven Two-Dimensional Competing Priors Toward Automatic and Accurate Building Detection |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TGRS.2008.2002027 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TGRS.2008.2002027 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper, a novel recognition-driven variational framework, toward multiple building extraction from aerial and satellite images, is introduced. To this end, competing shape priors are considered, and building extraction is addressed through an image segmentation approach that involves the use of a data-driven term constrained from the prior models. The proposed framework extends previous approaches toward the integration of |
en |
heal.journalName |
IEEE Transactions on Geoscience and Remote Sensing |
en |
dc.identifier.doi |
10.1109/TGRS.2008.2002027 |
en |