dc.contributor.author |
Staicu, V |
en |
dc.contributor.author |
Papageorgiou, N |
en |
dc.contributor.author |
Aizicovici, S |
en |
dc.date.accessioned |
2014-03-01T01:58:17Z |
|
dc.date.available |
2014-03-01T01:58:17Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28664 |
|
dc.subject |
Eigenvalues |
en |
dc.subject |
Indexation |
en |
dc.subject |
Multiple Solution |
en |
dc.subject |
Neumann Boundary Condition |
en |
dc.subject |
Spectrum |
en |
dc.subject |
Weight Function |
en |
dc.title |
The spectrum and an index formula for the Neumann $p-$Laplacian and multiple solutions for problems with a crossing nonlinearity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/dcds.2009.25.431 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/dcds.2009.25.431 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper we first conduct a study of the spectrum of the negative p-Laplacian with Neumann boundary conditions. More precisely we investigate the first nonzero eigenvalue. We produce alternative variational characterizations, we examine its dependence on p 2 (1,1) and on the weight function m 2 L 1 (Z)+ and we prove that the isolation of the principal eigen- |
en |
heal.journalName |
Discrete and Continuous Dynamical Systems |
en |
dc.identifier.doi |
10.3934/dcds.2009.25.431 |
en |