dc.contributor.author |
Motreanu, D |
en |
dc.contributor.author |
Motreanu, VV |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:58:40Z |
|
dc.date.available |
2014-03-01T01:58:40Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
00269255 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28701 |
|
dc.subject |
Asymptotically linear equations |
en |
dc.subject |
Critical group |
en |
dc.subject |
Linking sets |
en |
dc.subject |
Morse relation |
en |
dc.subject |
p-Laplacian |
en |
dc.title |
Existence and multiplicity of solutions for asymptotically linear, noncoercive elliptic equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00605-009-0094-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00605-009-0094-2 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
First we prove the existence of a nontrivial smooth solution for a p-Laplacian equation with a (p - 1)-linear nonlinearity and a noncoercive Euler functional, under hypotheses including resonant problems with respect to the principal eigen-value of (-Δp, W01,p(Z)). Then, for the semilinear problem (i.e., p = 2), assuming nonuniform nonresonance at infinity and zero, we prove a multiplicity theorem which provides the existence of at least three nontrivial solutions, two being of opposite constant sign. Our approach combines minimax techniques with Morse theory and truncation arguments. © Springer-Verlag 2009. |
en |
heal.journalName |
Monatshefte fur Mathematik |
en |
dc.identifier.doi |
10.1007/s00605-009-0094-2 |
en |
dc.identifier.volume |
159 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
59 |
en |
dc.identifier.epage |
80 |
en |