HEAL DSpace

Existence and multiplicity of solutions for asymptotically linear, noncoercive elliptic equations

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Motreanu, D en
dc.contributor.author Motreanu, VV en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:58:40Z
dc.date.available 2014-03-01T01:58:40Z
dc.date.issued 2009 en
dc.identifier.issn 00269255 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/28701
dc.subject Asymptotically linear equations en
dc.subject Critical group en
dc.subject Linking sets en
dc.subject Morse relation en
dc.subject p-Laplacian en
dc.title Existence and multiplicity of solutions for asymptotically linear, noncoercive elliptic equations en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00605-009-0094-2 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00605-009-0094-2 en
heal.publicationDate 2009 en
heal.abstract First we prove the existence of a nontrivial smooth solution for a p-Laplacian equation with a (p - 1)-linear nonlinearity and a noncoercive Euler functional, under hypotheses including resonant problems with respect to the principal eigen-value of (-Δp, W01,p(Z)). Then, for the semilinear problem (i.e., p = 2), assuming nonuniform nonresonance at infinity and zero, we prove a multiplicity theorem which provides the existence of at least three nontrivial solutions, two being of opposite constant sign. Our approach combines minimax techniques with Morse theory and truncation arguments. © Springer-Verlag 2009. en
heal.journalName Monatshefte fur Mathematik en
dc.identifier.doi 10.1007/s00605-009-0094-2 en
dc.identifier.volume 159 en
dc.identifier.issue 1 en
dc.identifier.spage 59 en
dc.identifier.epage 80 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record