dc.contributor.author | Poulou, MN | en |
dc.contributor.author | Stavrakakis, NM | en |
dc.date.accessioned | 2014-03-01T01:58:41Z | |
dc.date.available | 2014-03-01T01:58:41Z | |
dc.date.issued | 2009 | en |
dc.identifier.issn | 19371632 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/28704 | |
dc.subject | Absorbing Set | en |
dc.subject | Global Attractor | en |
dc.subject | Hausdorff and Fractal Dimension | en |
dc.subject | Klein-Gordon-Schr̈odinger System | en |
dc.subject | Lyapunov Exponents | en |
dc.title | Finite dimensionality of a klein-gordon-schrödinger type system | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.3934/dcdss.2009.2.149 | en |
heal.identifier.secondary | http://dx.doi.org/10.3934/dcdss.2009.2.149 | en |
heal.publicationDate | 2009 | en |
heal.abstract | In this paper we study the finite dimensionality of the global attractor for the following system of Klein-Gordon-Schrödinger type iψt + Kψxx + iαψ = φψ + f, φtt-φxx + φ + λφt =-Reψx + g, ψ(x, 0) = ψ0(x), ψ(x, 0) = φ0(x), φt(x, 0) = φ1(x), ψ(x, t) = φ(x, t) = 0, x δω, t > 0, where x 2, t > 0, λ > 0, α > 0, λ > 0, f and g are driving terms and is a bounded interval of IR. With the help of the Lyapunov exponents we give an estimate of the upper bound of its Hausdorff and Fractal dimension. | en |
heal.journalName | Discrete and Continuous Dynamical Systems - Series S | en |
dc.identifier.doi | 10.3934/dcdss.2009.2.149 | en |
dc.identifier.volume | 2 | en |
dc.identifier.issue | 1 | en |
dc.identifier.spage | 149 | en |
dc.identifier.epage | 161 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |