dc.contributor.author |
Pazzona, FG |
en |
dc.contributor.author |
Demontis, P |
en |
dc.contributor.author |
Suffritti, GB |
en |
dc.date.accessioned |
2014-03-01T01:58:43Z |
|
dc.date.available |
2014-03-01T01:58:43Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
00219606 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28708 |
|
dc.subject.other |
Atomistic simulations |
en |
dc.subject.other |
Cell model |
en |
dc.subject.other |
Coarse-grained |
en |
dc.subject.other |
Interacting molecules |
en |
dc.subject.other |
Local interactions |
en |
dc.subject.other |
Memory effects |
en |
dc.subject.other |
Thermodynamic model |
en |
dc.subject.other |
Adsorption properties |
en |
dc.subject.other |
Canonical ensemble |
en |
dc.subject.other |
Self-diffusion coefficients |
en |
dc.subject.other |
Single-cell models |
en |
dc.subject.other |
Static and dynamic |
en |
dc.subject.other |
Zeolite NaA |
en |
dc.subject.other |
Adsorbates |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Automata theory |
en |
dc.subject.other |
Cellular automata |
en |
dc.subject.other |
Flame resistance |
en |
dc.subject.other |
Microporosity |
en |
dc.subject.other |
Pattern recognition systems |
en |
dc.subject.other |
Silicate minerals |
en |
dc.subject.other |
Thermodynamic properties |
en |
dc.subject.other |
Translation (languages) |
en |
dc.subject.other |
Transport properties |
en |
dc.subject.other |
Zeolites |
en |
dc.subject.other |
Mean field theory |
en |
dc.subject.other |
Sulfur compounds |
en |
dc.subject.other |
Thermodynamics |
en |
dc.subject.other |
Xenon |
en |
dc.subject.other |
Microporous materials |
en |
dc.title |
From thermodynamic cell models to partitioning cellular automata for diffusion in zeolites. I. Structure of the algorithm |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1063/1.3267635 |
en |
heal.identifier.secondary |
234703 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1063/1.3267635 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In the study of adsorption of simple adsorbates in microporous materials like zeolites, thermodynamic models of small grand-canonical cells with very local interactions [e.g., see K. G. Ayappa, J. Chem. Phys. 111, 4736 (1999)] have been proven to be able to produce thermodynamic properties in very good agreement with the results of experiments and atomistic simulations. In this paper we present in details the structure and implementation of a thermodynamic partitioning cellular automaton (PCA) devised as a dynamical version of thermodynamic cell models and proposed as an easy environment to perform coarse-grained simulations of adsorption/diffusion of simple interacting molecules in microporous materials. Local evolution rules and memory effects are introduced to make our PCA able to complete the static picture provided by thermodynamic cell models with the simulation of transport properties. © 2009 American Institute of Physics. |
en |
heal.journalName |
Journal of Chemical Physics |
en |
dc.identifier.doi |
10.1063/1.3267635 |
en |
dc.identifier.volume |
131 |
en |
dc.identifier.issue |
23 |
en |