dc.contributor.author |
Kyritsi, STh |
en |
dc.contributor.author |
Nikolaos, SP |
en |
dc.date.accessioned |
2014-03-01T01:58:47Z |
|
dc.date.available |
2014-03-01T01:58:47Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
15340392 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28728 |
|
dc.subject |
Concave nonlinearity |
en |
dc.subject |
Concave-convex nonlinearities |
en |
dc.subject |
Critical point theory |
en |
dc.subject |
p-linear perturbation |
en |
dc.subject |
P-superlinear perturbation |
en |
dc.subject |
Resonance |
en |
dc.subject |
Truncation techniques |
en |
dc.subject |
Upper-lower solutions |
en |
dc.title |
Pairs of positive solutions for p-Laplacian equations with combined nonlinearities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/cpaa.2009.8.1031 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/cpaa.2009.8.1031 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We consider a nonlinear Dirichlet problem driven by the p-Laplacian differential operator, with a nonlinearity concave near the origin and a nonlinear perturbation of it. We look for multiple positive solutions. We consider two distinct cases. One when the perturbation is p-linear and resonant with respect to λ1 > 0 (the principal eigenvalue of (-Δp, W01,P(Z))) at infinity and the other when the perturbation is p-superlinear at infinity. In both cases we obtain two positive smooth solutions. The approach is variational, coupled with the method of upper-lower solutions and with suitable truncation techniques. |
en |
heal.journalName |
Communications on Pure and Applied Analysis |
en |
dc.identifier.doi |
10.3934/cpaa.2009.8.1031 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
1031 |
en |
dc.identifier.epage |
1051 |
en |