dc.contributor.author |
Vasilakopoulou, A |
en |
dc.contributor.author |
Psichogiou, M |
en |
dc.contributor.author |
Tzouvelekis, L |
en |
dc.contributor.author |
Tassios, PT |
en |
dc.contributor.author |
Kosmidis, C |
en |
dc.contributor.author |
Petrikkos, G |
en |
dc.contributor.author |
Roma, ES |
en |
dc.contributor.author |
Charvalos, E |
en |
dc.contributor.author |
Passiotou, M |
en |
dc.contributor.author |
Avlami, A |
en |
dc.contributor.author |
Daikos, GL |
en |
dc.date.accessioned |
2014-03-01T01:58:48Z |
|
dc.date.available |
2014-03-01T01:58:48Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
15353141 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28733 |
|
dc.subject.other |
amikacin |
en |
dc.subject.other |
ampicillin |
en |
dc.subject.other |
antibiotic agent |
en |
dc.subject.other |
antiinfective agent |
en |
dc.subject.other |
aztreonam |
en |
dc.subject.other |
cefalotin |
en |
dc.subject.other |
cefepime |
en |
dc.subject.other |
cefotaxime |
en |
dc.subject.other |
cefoxitin |
en |
dc.subject.other |
cefuroxime |
en |
dc.subject.other |
chloramphenicol |
en |
dc.subject.other |
ciprofloxacin |
en |
dc.subject.other |
cotrimoxazole |
en |
dc.subject.other |
genomic DNA |
en |
dc.subject.other |
gentamicin |
en |
dc.subject.other |
imipenem |
en |
dc.subject.other |
nalidixic acid |
en |
dc.subject.other |
piperacillin plus tazobactam |
en |
dc.subject.other |
streptomycin |
en |
dc.subject.other |
tetracycline |
en |
dc.subject.other |
tobramycin |
en |
dc.subject.other |
animal tissue |
en |
dc.subject.other |
article |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
disk diffusion |
en |
dc.subject.other |
DNA sequence |
en |
dc.subject.other |
drug sensitivity |
en |
dc.subject.other |
Escherichia coli |
en |
dc.subject.other |
gene cassette |
en |
dc.subject.other |
heterozygote |
en |
dc.subject.other |
hospital patient |
en |
dc.subject.other |
human |
en |
dc.subject.other |
integron |
en |
dc.subject.other |
multidrug resistance |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
outpatient |
en |
dc.subject.other |
phenotype |
en |
dc.subject.other |
phylogenetic tree |
en |
dc.subject.other |
polymerase chain reaction |
en |
dc.subject.other |
poultry |
en |
dc.subject.other |
prevalence |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
pulsed field gel electrophoresis |
en |
dc.subject.other |
reservoir |
en |
dc.subject.other |
Animals |
en |
dc.subject.other |
Blood |
en |
dc.subject.other |
Disk Diffusion Antimicrobial Tests |
en |
dc.subject.other |
DNA, Bacterial |
en |
dc.subject.other |
Drug Resistance, Microbial |
en |
dc.subject.other |
Drug Resistance, Multiple, Bacterial |
en |
dc.subject.other |
Escherichia coli |
en |
dc.subject.other |
Foodborne Diseases |
en |
dc.subject.other |
Gastrointestinal Tract |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Inpatients |
en |
dc.subject.other |
Integrons |
en |
dc.subject.other |
Outpatients |
en |
dc.subject.other |
Phenotype |
en |
dc.subject.other |
Polymerase Chain Reaction |
en |
dc.subject.other |
Poultry |
en |
dc.subject.other |
Sputum |
en |
dc.subject.other |
Suppuration |
en |
dc.subject.other |
Urine |
en |
dc.subject.other |
Escherichia coli |
en |
dc.title |
Prevalence and characterization of class 1 integrons in escherichia coli of poultry and human origin |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1089/fpd.2009.0281 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1089/fpd.2009.0281 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A prospective study was conducted to determine the prevalence and the gene-cassette content of class 1 integrons in Escherichia coli of poultry and human origin. A total of 235 E. coli isolates were examined; 65 were derived from farm poultry, 80 from hospitalized, and 90 from nonhospitalized patients. Susceptibilities to a range of antimicrobial agents were determined by disk diffusion. Int1-specific polymerase chain reaction, conserved-segment polymerase chain reaction, and DNA sequencing were used to determine the presence, length, and content of integrons. The relatedness among the isolates was examined by pulsed-field gel electrophoresis of XbaI digests of genomic DNA. The integron carriage rate for poultry isolates was 49.2%, whereas the carriage rate for hospital isolates was 26.2% and for community 11.1%. Multidrug resistance (resistance to three or more classes of antibiotics) phenotypes were observed in 96.8% of the integron-positive isolates, whereas only 34.9% of nonintegron-carrying organisms were multidrug resistant (p<0.001). Seven integron types ranging in size from 663 to 2674bp were identified; six types were observed in poultry isolates, five in hospital, and three in community isolates. Each integron type carried a distinct gene-cassette combination. The most prevalent gene cassettes belonged to the aad and dfr families. Identical integrons were detected in E. coli of human and poultry origin. A large reservoir of integrons exists in E. coli of poultry origin. The horizontal transfer of class 1 integrons among bacteria of poultry and human origins may contribute in the dissemination of antimicrobial resistance. © 2009, Mary Ann Liebert, Inc. |
en |
heal.journalName |
Foodborne Pathogens and Disease |
en |
dc.identifier.doi |
10.1089/fpd.2009.0281 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
1211 |
en |
dc.identifier.epage |
1218 |
en |