HEAL DSpace

Variable selection via nonconcave penalized likelihood in high dimensional medical problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mylona, K en
dc.contributor.author Koukouvinos, C en
dc.contributor.author Theodoraki, E-M en
dc.contributor.author Katsaragakis, S en
dc.date.accessioned 2014-03-01T01:58:50Z
dc.date.available 2014-03-01T01:58:50Z
dc.date.issued 2009 en
dc.identifier.issn 09731377 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/28749
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-77954781235&partnerID=40&md5=8794a1f7bbe15f8d8dc56ad85f90d06c en
dc.subject Generalized linear model en
dc.subject High-dimensional dataset en
dc.subject Nonconcave penalized likelihood en
dc.subject Trauma en
dc.subject Variable selection en
dc.subject.other Data sets en
dc.subject.other Diverse fields en
dc.subject.other Execution time en
dc.subject.other Generalized linear model en
dc.subject.other Health-study en
dc.subject.other High-dimensional en
dc.subject.other High-dimensional dataset en
dc.subject.other Logistic regressions en
dc.subject.other Model selection techniques en
dc.subject.other Penalized likelihood en
dc.subject.other Risk factors en
dc.subject.other Statistical modelling en
dc.subject.other Statistical models en
dc.subject.other Subset variable selection en
dc.subject.other Variable selection en
dc.subject.other Health risks en
dc.subject.other Medical problems en
dc.subject.other Statistics en
dc.title Variable selection via nonconcave penalized likelihood in high dimensional medical problems en
heal.type journalArticle en
heal.publicationDate 2009 en
heal.abstract Variable selection is fundamental to high-dimensional statistical modelling in diverse fields of sciences. Specially in health studies, many potential factors are introduced to determine an outcome variable. In our study, different statistical methods are applied to analyze trauma annual data, collected by 30 General Hospitals in Greece. The dataset consists of 6334 observations and at most 131 factors that include demographic, transport and intrahospital data. The statistical methods employed in this work were the nonconcave penalized likelihood methods, SCAD, LASSO, and Hard, the generalized linear logistic regression, and the best subset variable selection, used to detect possible risk factors of death. A variety of different statistical models are considered, with respect to the combinations of factors and the number of observations. A comparative survey reveals differences between results and execution times of each method. The performed analysis reveals several distinct advantages of the nonconcave penalized likelihood methods over the traditional model selection techniques. © 2009 by IJAMAS, CESER. en
heal.journalName International Journal of Applied Mathematics and Statistics en
dc.identifier.volume 14 en
dc.identifier.issue J09 en
dc.identifier.spage 1 en
dc.identifier.epage 11 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής