HEAL DSpace

Bayesian Multinomial Logit Theory and Route Choice Example

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Washington, S en
dc.contributor.author Congdon, P en
dc.contributor.author Karlaftis, MG en
dc.contributor.author Mannering, FL en
dc.date.accessioned 2014-03-01T01:58:51Z
dc.date.available 2014-03-01T01:58:51Z
dc.date.issued 2009 en
dc.identifier.issn 0361-1981 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/28756
dc.subject.classification Engineering, Civil en
dc.subject.classification Transportation en
dc.subject.classification Transportation Science & Technology en
dc.subject.other CHAIN MONTE-CARLO en
dc.subject.other TRAVEL MODE CHOICE en
dc.subject.other CONVERGENCE en
dc.subject.other LIKELIHOOD en
dc.title Bayesian Multinomial Logit Theory and Route Choice Example en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Statisticians along with other scientists have made significant computational advances that enable the estimation of formerly complex statistical models. The Bayesian inference framework combined with Markov chain Monte Carlo estimation methods such as the Gibbs sampler enable the estimation of discrete choice models such as the multinomial logit (MNL) model. MNL models are frequently applied in transportation research to model choice outcomes such as mode, destination, or route choices or to model categorical outcomes such as crash outcomes. Recent developments allow for the modification of the potentially limiting assumptions of MNL such as the independence from irrelevant alternatives (IIA) property. However, relatively little transportation-related research has focused on Bayesian MNL models, the tractability of which is of great value to researchers and practitioners alike. This paper addresses MNL model specification issues in the Bayesian framework, such as the value of including prior information on parameters, allowing for nonlinear covariate effects, and extensions to random parameter models, so changing the usual limiting HA assumption. This paper also provides an example that demonstrates, using route-choice data, the considerable potential of the Bayesian MNL approach with many transportation applications. This paper then concludes with a discussion of the pros and cons of this Bayesian approach and identifies when its application is worthwhile. en
heal.publisher NATL ACAD SCIENCES en
heal.journalName TRANSPORTATION RESEARCH RECORD en
dc.identifier.isi ISI:000274489300004 en
dc.identifier.issue 2136 en
dc.identifier.spage 28 en
dc.identifier.epage 36 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής