dc.contributor.author |
Aggelogiannaki, E |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.date.accessioned |
2014-03-01T01:58:57Z |
|
dc.date.available |
2014-03-01T01:58:57Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0967-0661 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28794 |
|
dc.subject |
Hyperbolic distributed parameter systems |
en |
dc.subject |
Radial basis function neural networks |
en |
dc.subject |
H-infinity control |
en |
dc.subject |
Robust control |
en |
dc.subject |
Thermal systems |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
MODEL-PREDICTIVE CONTROL |
en |
dc.subject.other |
FEEDBACK-CONTROL |
en |
dc.subject.other |
PDE SYSTEMS |
en |
dc.title |
Robust nonlinear H-infinity control of hyperbolic distributed parameter systems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A radial basis function (RBF) neural network model is developed for the identification of hyperbolic distributed parameter systems (DPSs). The empirical model is based only on process input-output data and is used for the estimation of the controlled variables at multiple spatial locations. The produced nonlinear model is transformed to a nonlinear state-space formulation, which in turn is used for deriving a robust H-infinity control law. The proposed methodology is applied to a long duct for the flow-based control of temperature distribution. The performance of the proposed method is illustrated by comparing it with conventional control strategies. (C) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
CONTROL ENGINEERING PRACTICE |
en |
dc.identifier.isi |
ISI:000266300500010 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
723 |
en |
dc.identifier.epage |
732 |
en |