dc.contributor.author | Dodos, P | en |
dc.contributor.author | Kanellopoulos, V | en |
dc.contributor.author | Karagiannis, N | en |
dc.date.accessioned | 2014-03-01T01:59:00Z | |
dc.date.available | 2014-03-01T01:59:00Z | |
dc.date.issued | 2010 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/28820 | |
dc.relation.uri | http://arxiv.org/abs/1006.2671 | en |
dc.subject | Level Set | en |
dc.subject | Satisfiability | en |
dc.title | A density version of the Halpern-L\"{a}uchli theorem | en |
heal.type | journalArticle | en |
heal.publicationDate | 2010 | en |
heal.abstract | We prove a density version of the Halpern-L\"{a}uchli Theorem. This settlesin the affirmative a conjecture of R. Laver. Specifically, let us say that atree $T$ is homogeneous if $T$ has a unique root and there exists an integer$b\meg 2$ such that every $t\in T$ has exactly $b$ immediate successors. Weshow that for every $d\meg 1$ and | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |