dc.contributor.author |
Irges, N |
en |
dc.contributor.author |
Knechtli, F |
en |
dc.date.accessioned |
2014-03-01T01:59:01Z |
|
dc.date.available |
2014-03-01T01:59:01Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28825 |
|
dc.subject |
Degree of Freedom |
en |
dc.subject |
Dimensional Reduction |
en |
dc.subject |
Extra Dimension |
en |
dc.subject |
Gauge Theory |
en |
dc.subject |
Long Distance |
en |
dc.subject |
Phase Transition |
en |
dc.subject |
Second Order |
en |
dc.title |
A new model for confinement |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.physletb.2010.01.040 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.physletb.2010.01.040 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We propose a new approach towards the understanding of confinement. Starting from an anisotropic five-dimensional pure gauge theory, we approach a second order phase transition where the system reduces dimensionally. Dimensional reduction is realized via localization of the gauge and scalar degrees of freedom on four-dimensional branes. The gauge coupling deriving from the brane Wilson loop observable runs like an |
en |
heal.journalName |
Physics Letters B |
en |
dc.identifier.doi |
10.1016/j.physletb.2010.01.040 |
en |