dc.contributor.author | Aperis, A | en |
dc.contributor.author | Kotetes, P | en |
dc.contributor.author | Papantonopoulos, E | en |
dc.contributor.author | Siopsis, G | en |
dc.contributor.author | Skamagoulis, P | en |
dc.contributor.author | Varelogiannis, G | en |
dc.date.accessioned | 2014-03-01T01:59:18Z | |
dc.date.available | 2014-03-01T01:59:18Z | |
dc.date.issued | 2010 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/28907 | |
dc.relation.uri | http://arxiv.org/abs/1009.6179 | en |
dc.subject | Charge Density Wave | en |
dc.subject | Conformal Field Theory | en |
dc.subject | Critical Temperature | en |
dc.subject | Dynamic Response | en |
dc.subject | Electric Field | en |
dc.subject | Gauge Field | en |
dc.subject | Numerical Computation | en |
dc.subject | Scalar Field | en |
dc.subject | Black Hole | en |
dc.subject | Ground State | en |
dc.subject | Phase Transition | en |
dc.title | Holographic Charge Density Waves | en |
heal.type | journalArticle | en |
heal.publicationDate | 2010 | en |
heal.abstract | We discuss a gravity dual of a charge density wave consisting of a U(1) gaugefield and two scalar fields in the background of an AdS$_4$ Schwarzschild blackhole together with an antisymmetric field (probe limit). Interactions drive thesystem to a phase transition below a critical temperature. We numericallycompute the ground states characterized by modulated solutions for the | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |