dc.contributor.author |
Dupuis, P |
en |
dc.contributor.author |
Spiliopoulos, K |
en |
dc.date.accessioned |
2014-03-01T01:59:19Z |
|
dc.date.available |
2014-03-01T01:59:19Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28917 |
|
dc.relation.uri |
http://arxiv.org/abs/1011.5933 |
en |
dc.subject |
Importance Sampling |
en |
dc.subject |
Large Deviation |
en |
dc.subject |
Large Deviation Principle |
en |
dc.subject |
Oscillations |
en |
dc.subject |
Stochastic Differential Equation |
en |
dc.subject |
Weak Convergence |
en |
dc.subject |
Lower Bound |
en |
dc.title |
Large Deviations for Multiscale Diffusions via Weak Convergence Methods |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We study the large deviations principle for locally periodic stochasticdifferential equations with small noise and fast oscillating coefficients.There are three possible regimes depending on how fast the intensity of thenoise goes to zero relative to the homogenization parameter. We use weakconvergence methods which provide convenient representations for the actionfunctional for all three regimes. Along the |
en |