| dc.contributor.author | Argyros, S | en |
| dc.contributor.author | Raikoftsalis, T | en |
| dc.date.accessioned | 2014-03-01T01:59:34Z | |
| dc.date.available | 2014-03-01T01:59:34Z | |
| dc.date.issued | 2010 | en |
| dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/28972 | |
| dc.relation.uri | http://arxiv.org/abs/1003.0870 | en |
| dc.subject | banach space | en |
| dc.subject | reflexive banach space | en |
| dc.title | The cofinal property of the Reflexive Indecomposable Banach spaces | en |
| heal.type | journalArticle | en |
| heal.publicationDate | 2010 | en |
| heal.abstract | It is shown that every separable reflexive Banach space is a quotient of areflexive Hereditarily Indecomposable space, which yields that every separablereflexive Banach is isomorphic to a subspace of a reflexive Indecomposablespace. Furthermore, every separable reflexive Banach space is a quotient of areflexive complementably $\ell_p$ saturated space with $1<p<\infty$ and of a$c_0$ saturated space. | en |
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||