dc.contributor.author |
Dimitrios, A |
en |
dc.contributor.author |
Rousopoulos, P |
en |
dc.contributor.author |
Papaodysseus, C |
en |
dc.contributor.author |
Panagopoulos, M |
en |
dc.contributor.author |
Loumou, P |
en |
dc.contributor.author |
Theodoropoulos, G |
en |
dc.date.accessioned |
2014-03-01T01:59:35Z |
|
dc.date.available |
2014-03-01T01:59:35Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
01628828 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28997 |
|
dc.subject |
Automatic curve classification |
en |
dc.subject |
Deformation invariant elastic properties |
en |
dc.subject |
Elastic deformation |
en |
dc.subject |
Image analysis |
en |
dc.subject |
Parasite automatic identification |
en |
dc.subject |
Pattern classification techniques |
en |
dc.subject |
Straightening deformed objects |
en |
dc.subject.other |
Automatic identification |
en |
dc.subject.other |
Elastic properties |
en |
dc.subject.other |
Parasite- |
en |
dc.subject.other |
Pattern classification techniques |
en |
dc.subject.other |
Automatic indexing |
en |
dc.subject.other |
Automation |
en |
dc.subject.other |
Elastic deformation |
en |
dc.subject.other |
Electronic data interchange |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
animal |
en |
dc.subject.other |
article |
en |
dc.subject.other |
automated pattern recognition |
en |
dc.subject.other |
computer assisted diagnosis |
en |
dc.subject.other |
decision support system |
en |
dc.subject.other |
elastography |
en |
dc.subject.other |
histology |
en |
dc.subject.other |
human |
en |
dc.subject.other |
methodology |
en |
dc.subject.other |
parasite |
en |
dc.subject.other |
physiology |
en |
dc.subject.other |
Young modulus |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Animals |
en |
dc.subject.other |
Decision Support Techniques |
en |
dc.subject.other |
Elastic Modulus |
en |
dc.subject.other |
Elasticity Imaging Techniques |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Image Interpretation, Computer-Assisted |
en |
dc.subject.other |
Parasites |
en |
dc.subject.other |
Pattern Recognition, Automated |
en |
dc.title |
A general methodology for the determination of 2D bodies elastic deformation invariants: Application to the automatic identification of parasites |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TPAMI.2009.70 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TPAMI.2009.70 |
en |
heal.identifier.secondary |
4815258 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A novel methodology is introduced here that exploits 2D images of arbitrary elastic body deformation instances so as to quantify mechanoelastic characteristics that are deformation invariant. Determination of such characteristics allows for developing methods offering an image of the undeformed body. General assumptions about the mechanoelastic properties of the bodies are stated which lead to two different approaches for obtaining bodies' deformation invariants. One was developed to spot a deformed body's neutral line and its cross sections, while the other solves deformation PDEs by performing a set of equivalent image operations on the deformed body images. Both of these processes may furnish a body-undeformed version from its deformed image. This was confirmed by obtaining the undeformed shape of deformed parasites, cells (protozoa), fibers, and human lips. In addition, the method has been applied to the important problem of parasite automatic classification from their microscopic images. To achieve this, we first apply the previous method to straighten the highly deformed parasites, and then, apply a dedicated curve classification method to the straightened parasite contours. It is demonstrated that essentially different deformations of the same parasite give rise to practically the same undeformed shape, thus confirming the consistency of the introduced methodology. Finally, the developed pattern recognition method classifies the unwrapped parasites into six families, with an accuracy rate of 97.6 percent. © 2006 IEEE. |
en |
heal.journalName |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
en |
dc.identifier.doi |
10.1109/TPAMI.2009.70 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
799 |
en |
dc.identifier.epage |
814 |
en |