HEAL DSpace

Numerical solution of crack problems in gradient elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papanicolopulos, S-A en
dc.contributor.author Zervos, A en
dc.date.accessioned 2014-03-01T01:59:47Z
dc.date.available 2014-03-01T01:59:47Z
dc.date.issued 2010 en
dc.identifier.issn 17550777 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29044
dc.subject Mathematical modelling en
dc.subject Strength & testing of materials en
dc.subject Stress analysis en
dc.subject.other Crack problems en
dc.subject.other Discretisation en
dc.subject.other Displacement formulation en
dc.subject.other Elastic materials en
dc.subject.other Finite-element en
dc.subject.other Gradient elasticity en
dc.subject.other Higher order terms en
dc.subject.other Mathematical modelling en
dc.subject.other Numerical results en
dc.subject.other Numerical scheme en
dc.subject.other Numerical solution en
dc.subject.other Second order derivatives en
dc.subject.other Stress and strain en
dc.subject.other Three-dimensional elements en
dc.subject.other Cracks en
dc.subject.other Elastohydrodynamics en
dc.subject.other Fracture mechanics en
dc.subject.other Materials testing en
dc.subject.other Mathematical models en
dc.subject.other Microstructure en
dc.subject.other Numerical analysis en
dc.subject.other Strain en
dc.subject.other Stress analysis en
dc.subject.other Elasticity en
dc.title Numerical solution of crack problems in gradient elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1680/eacm.2010.163.2.73 en
heal.identifier.secondary http://dx.doi.org/10.1680/eacm.2010.163.2.73 en
heal.publicationDate 2010 en
heal.abstract Gradient elasticity is a constitutive framework that takes into account the microstructure of an elastic material. It considers that, in addition to the strains, second-order derivatives of the displacement also affect the energy stored in the medium. Three different yet equivalent forms of gradient elasticity can be found in the literature, reflecting the different ways in which the second-order derivatives can be grouped to form other physically meaningful quantities. This paper presents a general discretisation of gradient elasticity that can be applied to all three forms, based on the finite-element displacement formulation. The presence of higher order terms requires C1-continuous interpolation, and some appropriate two- and three-dimensional elements are presented. Numerical results for the displacement, stress and strain fields around cracks are shown and compared with available solutions, demonstrating the robustness and accuracy of the numerical scheme and investigating the effect of microstructure in the context of fracture mechanics. en
heal.journalName Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics en
dc.identifier.doi 10.1680/eacm.2010.163.2.73 en
dc.identifier.volume 163 en
dc.identifier.issue 2 en
dc.identifier.spage 73 en
dc.identifier.epage 82 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής