dc.contributor.author |
Stefanou, I |
en |
dc.contributor.author |
Sulem, J |
en |
dc.date.accessioned |
2014-03-01T02:00:00Z |
|
dc.date.available |
2014-03-01T02:00:00Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
17569737 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29067 |
|
dc.subject |
3D Cosserat |
en |
dc.subject |
homogenization |
en |
dc.subject |
rock masses |
en |
dc.subject.other |
Anisotropic material |
en |
dc.subject.other |
Continuum model |
en |
dc.subject.other |
Cosserat |
en |
dc.subject.other |
Cosserat continuum |
en |
dc.subject.other |
Differential expansion |
en |
dc.subject.other |
Dip angle |
en |
dc.subject.other |
Discrete systems |
en |
dc.subject.other |
Dynamic behaviors |
en |
dc.subject.other |
Equivalent continuum |
en |
dc.subject.other |
Fractured rock mass |
en |
dc.subject.other |
homogenization |
en |
dc.subject.other |
Homogenization techniques |
en |
dc.subject.other |
Internal forces |
en |
dc.subject.other |
Joint set |
en |
dc.subject.other |
Mechanical points |
en |
dc.subject.other |
Rock discontinuity |
en |
dc.subject.other |
Rock mass |
en |
dc.subject.other |
rock masses |
en |
dc.subject.other |
Rock structures |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Continuum mechanics |
en |
dc.subject.other |
Homogenization method |
en |
dc.subject.other |
Kinematics |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Mechanical properties |
en |
dc.subject.other |
Rock mechanics |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Rocks |
en |
dc.title |
Three-dimensional cosserat continuum modeling of fractured rock masses |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S1756973710000424 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S1756973710000424 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The behavior of rock masses is influenced by the existence of discontinuities, which divide the rock in joint blocks making it an inhomogeneous anisotropic material. From the mechanical point of view, the geometrical and mechanical properties of the rock discontinuities define the mechanical properties of the rock structure. In the present paper we consider a rock mass with three joint sets of different dip angle, dip direction, spacing and mechanical properties. The dynamic behavior of the discrete system is then described by a continuum model, which is derived by homogenization. The homogenization technique applied here is called generalized differential expansion homogenization technique and has its roots in Germain's (1973) formulation for micromorphic continua. The main advantage of the method is the avoidance of the averaging of the kinematic quotients and the derivation of a continuum that maps exactly the degrees of freedom of the discrete system through a one-to-one correspondence of the kinematic measures. The derivation of the equivalent continuum is based on the identification for any virtual kinematic field of the power of the internal forces and of the kinetic energy of the continuum with the corresponding quantities of the discrete system. The result is an anisotropic three-dimensional Cosserat continuum. © 2010 Imperial College Press. |
en |
heal.journalName |
Journal of Multiscale Modeling |
en |
dc.identifier.doi |
10.1142/S1756973710000424 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
217 |
en |
dc.identifier.epage |
234 |
en |