HEAL DSpace

Crystallization and Melting Simulations of Oligomeric alpha 1 Isotactic Polypropylene

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Romanos, NA en
dc.contributor.author Theodorou, DN en
dc.date.accessioned 2014-03-01T02:00:19Z
dc.date.available 2014-03-01T02:00:19Z
dc.date.issued 2010 en
dc.identifier.issn 0024-9297 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29083
dc.subject.classification Polymer Science en
dc.subject.other MOLECULAR-DYNAMICS SIMULATION en
dc.subject.other SUPERCOOLED POLYMER MELTS en
dc.subject.other CHAIN-FOLDED STRUCTURES en
dc.subject.other POLYETHYLENE CRYSTALLIZATION en
dc.subject.other PHASE COEXISTENCE en
dc.subject.other CRYSTAL-GROWTH en
dc.subject.other HIGH TACTICITY en
dc.subject.other N-ALKANES en
dc.subject.other TEMPERATURE en
dc.subject.other NUCLEATION en
dc.title Crystallization and Melting Simulations of Oligomeric alpha 1 Isotactic Polypropylene en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The crystallization and melting of the alpha 1 form of isotactic polypropylene (iPP) was studied with molecular dynamics (MD) simulations, using a fully flexible force field representing the C and I-I atoms atomistically and the CH3 groups as united atoms. Initially, a model crystal lattice of iPP of infinite molar mass was generated from experimental diffraction data, adding the pendant and geminal hydrogens. Next, crystal configurations of finite molar mass were created from this initial model lattice, and it was verified that the force field could preserve the crystal structure, keeping intact the monoclinic symmetry of the crystal. The generated configurations were heated under isobaric conditions, until a first-order transition into the melt state took place. The density change upon melting and the enthalpy of melting were estimated as differences between well-equilibrated ensembles of crystal and melt configurations. In order to calculate the equilibrium melting temperature T-m, composite (sandwich) configurations consisting of both melt and crystal subdomains in contact with each other were generated and subjected to a series of isothermal-isobaric simulations at a variety of temperatures. T-m was determined as that temperature where none of the phases in the sandwich grew at the expense of the other. As proximity to the glass temperature T-g made the dynamics of crystal growth very sluggish, a constraining potential inducing helical conformations along the chains was introduced to accelerate crystallization. Using a novel Gibbs-Duhem integration scheme that utilizes data from both sandwich and single-phase solid and liquid simulations, results for equilibrium solid-liquid coexistence were extrapolated to zero constraining potential. An accurate estimate of T-m was thereby obtained. en
heal.publisher AMER CHEMICAL SOC en
heal.journalName MACROMOLECULES en
dc.identifier.isi ISI:000278631900038 en
dc.identifier.volume 43 en
dc.identifier.issue 12 en
dc.identifier.spage 5455 en
dc.identifier.epage 5469 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής