HEAL DSpace

A Categorical Structure for the Virtual Braid Group

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kauffman, LH en
dc.contributor.author Lambropoulou, S en
dc.date.accessioned 2014-03-01T02:01:38Z
dc.date.available 2014-03-01T02:01:38Z
dc.date.issued 2011 en
dc.identifier.issn 00927872 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29216
dc.subject Pure virtual braid group en
dc.subject Pure welded braid group en
dc.subject Virtual braid group en
dc.subject Welded braid group en
dc.title A Categorical Structure for the Virtual Braid Group en
heal.type journalArticle en
heal.identifier.primary 10.1080/00927872.2011.617280 en
heal.identifier.secondary http://dx.doi.org/10.1080/00927872.2011.617280 en
heal.publicationDate 2011 en
heal.abstract This article gives a new interpretation of the virtual braid group in terms of a strict monoidal category SC that is freely generated by one object and three morphisms, two of the morphisms corresponding to basic pure virtual braids and one morphism corresponding to a transposition in the symmetric group. This point of view makes many relationships between the virtual braid group and the pure virtual braid group apparent, and makes representations of the virtual braid groups and pure virtual braid groups via solutions to the algebraic Yang-Baxter Equation equally transparent. In this categorical framework, the virtual braid group has nothing to do with the plane and nothing to do with virtual crossings. It is a natural group associated with the structure of algebraic braiding. © 2011 Copyright Taylor and Francis Group, LLC. en
heal.journalName Communications in Algebra en
dc.identifier.doi 10.1080/00927872.2011.617280 en
dc.identifier.volume 39 en
dc.identifier.issue 12 en
dc.identifier.spage 4679 en
dc.identifier.epage 4704 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record