dc.contributor.author |
Panagopoulos, IK |
en |
dc.contributor.author |
Karayannis, AN |
en |
dc.contributor.author |
Kassomenos, P |
en |
dc.contributor.author |
Aravossis, K |
en |
dc.date.accessioned |
2014-03-01T02:01:38Z |
|
dc.date.available |
2014-03-01T02:01:38Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
16808584 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29217 |
|
dc.subject |
CDF |
en |
dc.subject |
Indoor air pollution |
en |
dc.subject |
Indoor sources |
en |
dc.subject |
Numerical modelling |
en |
dc.subject |
Turbulence |
en |
dc.subject.other |
Air flow |
en |
dc.subject.other |
CDF |
en |
dc.subject.other |
CFD code PHOENICS |
en |
dc.subject.other |
CFD method |
en |
dc.subject.other |
CFD models |
en |
dc.subject.other |
CFD simulations |
en |
dc.subject.other |
Contaminant distributions |
en |
dc.subject.other |
Emission characteristics |
en |
dc.subject.other |
Emission factors |
en |
dc.subject.other |
Emitting material |
en |
dc.subject.other |
Exhaust hoods |
en |
dc.subject.other |
Indoor air |
en |
dc.subject.other |
Indoor environment |
en |
dc.subject.other |
Indoor pollution |
en |
dc.subject.other |
Indoor sources |
en |
dc.subject.other |
Indoor space |
en |
dc.subject.other |
Living room |
en |
dc.subject.other |
Mixing ventilation |
en |
dc.subject.other |
Numerical modelling |
en |
dc.subject.other |
Open Access |
en |
dc.subject.other |
Rational design |
en |
dc.subject.other |
Scalar conservation |
en |
dc.subject.other |
Air |
en |
dc.subject.other |
Air intakes |
en |
dc.subject.other |
Apartment houses |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Formaldehyde |
en |
dc.subject.other |
Navier Stokes equations |
en |
dc.subject.other |
Pollution |
en |
dc.subject.other |
Turbulence |
en |
dc.subject.other |
Ventilation |
en |
dc.subject.other |
Volatile organic compounds |
en |
dc.subject.other |
Indoor air pollution |
en |
dc.subject.other |
airflow |
en |
dc.subject.other |
anthropogenic source |
en |
dc.subject.other |
atmospheric pollution |
en |
dc.subject.other |
exhaust emission |
en |
dc.subject.other |
formaldehyde |
en |
dc.subject.other |
indoor air |
en |
dc.subject.other |
Navier-Stokes equations |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
turbulence |
en |
dc.subject.other |
ventilation |
en |
dc.subject.other |
volatile organic compound |
en |
dc.title |
A CFD simulation study of VOC and formaldehyde indoor air pollution dispersion in an apartment as part of an indoor pollution management plan |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.4209/aaqr.2010.11.0092 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.4209/aaqr.2010.11.0092 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
This paper is a preliminary report of an indoor pollution case study in a complex of apartments as a part of an Indoor Pollution Management Plan (IPMP). It describes the calculation by Computational Fluid Dynamics (CFD) techniques and presents the predicted air flow, Volatile Organic Compounds (VOCs) and formaldehyde contaminant distributions in an apartment comprised of a full-scale kitchen with open access to a living room, ventilated by an exhaust hood. The CFD Code PHOENICS®, which is based on solving the full 3-D Navier Stokes equations for turbulent flow and scalar conservation equations, was used. Major kitchen indoor pollution sources, VOCs and formaldehyde emitting materials and their emission characteristics were calculated through the use of emission factors. A typical apartment was used under case study and its detailed geometry was applied for the CFD model. To analyze the characteristics of the indoor environment, different mixing ventilation schemes (different locations of the cooker/oven and air inlets) were chosen as the parameters to investigate the indoor environment. The fields of VOCs and formaldehyde for several air inlets window positions, and ventilation parameters were calculated and compared. It was concluded that CFD methods can be used as a useful tool to assist the rational design of indoor spaces. © Taiwan Association for Aerosol Research. |
en |
heal.journalName |
Aerosol and Air Quality Research |
en |
dc.identifier.doi |
10.4209/aaqr.2010.11.0092 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
758 |
en |
dc.identifier.epage |
762 |
en |