HEAL DSpace

A decision support system for assisting fine needle aspiration diagnosis of thyroid malignancy

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zoulias, EA en
dc.contributor.author Asvestas, PA en
dc.contributor.author Matsopoulos, GK en
dc.contributor.author Tseleni-Balafouta, S en
dc.date.accessioned 2014-03-01T02:01:39Z
dc.date.available 2014-03-01T02:01:39Z
dc.date.issued 2011 en
dc.identifier.issn 08846812 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29219
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-80955140473&partnerID=40&md5=7c86a1631fb99378b586a275ba51d332 en
dc.subject Artificial neural networks en
dc.subject Aspiration en
dc.subject Classification en
dc.subject Decision support system en
dc.subject Fine needle en
dc.subject Thyroid malignancy en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other aspiration biopsy en
dc.subject.other classification en
dc.subject.other decision support system en
dc.subject.other diagnostic accuracy en
dc.subject.other diagnostic test accuracy study en
dc.subject.other human en
dc.subject.other human tissue en
dc.subject.other k nearest neighbor en
dc.subject.other major clinical study en
dc.subject.other priority journal en
dc.subject.other sensitivity and specificity en
dc.subject.other support vector machine en
dc.subject.other thyroid cancer en
dc.subject.other Biopsy, Fine-Needle en
dc.subject.other Decision Support Techniques en
dc.subject.other Humans en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Thyroid Gland en
dc.subject.other Thyroid Neoplasms en
dc.title A decision support system for assisting fine needle aspiration diagnosis of thyroid malignancy en
heal.type journalArticle en
heal.publicationDate 2011 en
heal.abstract OBJECTIVE: To assist diagnosis of thyroid malignancy, implementing a decision support system (DSS) using fine needle aspiration biopsy (FNAB) data. STUDY DESIGN: The set of 2,035 thyroid smears contained 1,886 smears of nonmalignancy (class 1) and 150 smears of malignancy (class 2) verified histologically. For each smear, 67 medical features were considered by the expert, forming 2,036 feature vectors, which were fed into a DSS for discriminating between malignant and nonmalignant smears. The DSS comprised a feature selection and classification module using a combination of three classifiers, the artificial neural network, the support vector machines, and the k-nearest neighbor, under the majority vote procedure. RESULTS: The overall classification accuracy of the DSS was 98.6%, marginally better than the FNAB (97.3%). The DSS had lower sensitivity (89.1%) and better specificity (99.4%) compared to the FNAB. Regarding the smears characterized as ""suspicious"" by FNAB, a significant improvement of overall accuracy was obtained by the proposed DSS system (84.6%) compared to the FNAB (50.0%). CONCLUSION: The proposed DSS provides significant improvement compared to FNAB regarding discrimination of smears characterized by an expert as ""suspicious"", reducing the number of patients undergoing surgical procedures. © Science Printers and Publishers, Inc. en
heal.journalName Analytical and Quantitative Cytology and Histology en
dc.identifier.volume 33 en
dc.identifier.issue 4 en
dc.identifier.spage 215 en
dc.identifier.epage 222 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής