dc.contributor.author |
Antoniou, C |
en |
dc.contributor.author |
Balakrishna, R |
en |
dc.contributor.author |
Koutsopoulos, HN |
en |
dc.contributor.author |
Ben-Akiva, M |
en |
dc.date.accessioned |
2014-03-01T02:01:47Z |
|
dc.date.available |
2014-03-01T02:01:47Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
02286203 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29253 |
|
dc.subject |
Calibration |
en |
dc.subject |
Dynamic Traffic Assignment |
en |
dc.subject |
Off-line calibration |
en |
dc.subject |
On-line calibration |
en |
dc.subject.other |
Automated vehicle identifications |
en |
dc.subject.other |
Calibration method |
en |
dc.subject.other |
Data source |
en |
dc.subject.other |
Demand and supply |
en |
dc.subject.other |
Density data |
en |
dc.subject.other |
Dynamic network |
en |
dc.subject.other |
Dynamic Traffic Assignment |
en |
dc.subject.other |
Dynamic traffic assignments |
en |
dc.subject.other |
Model parameters |
en |
dc.subject.other |
Off-line calibration |
en |
dc.subject.other |
On-line calibration |
en |
dc.subject.other |
Probe vehicles |
en |
dc.subject.other |
Real-time information |
en |
dc.subject.other |
Route guidance |
en |
dc.subject.other |
Simulation model |
en |
dc.subject.other |
Simulation-based |
en |
dc.subject.other |
Time varying |
en |
dc.subject.other |
Traffic conditions |
en |
dc.subject.other |
Traffic dynamics |
en |
dc.subject.other |
Traffic sensors |
en |
dc.subject.other |
Traffic surveillance |
en |
dc.subject.other |
Transportation demand |
en |
dc.subject.other |
Travel behaviour |
en |
dc.subject.other |
Unified framework |
en |
dc.subject.other |
Calibration |
en |
dc.subject.other |
Differential thermal analysis |
en |
dc.subject.other |
Estimation |
en |
dc.subject.other |
Highway traffic control |
en |
dc.subject.other |
Information management |
en |
dc.subject.other |
License plates (automobile) |
en |
dc.subject.other |
Motor transportation |
en |
dc.subject.other |
Network management |
en |
dc.subject.other |
Network performance |
en |
dc.subject.other |
Time varying networks |
en |
dc.subject.other |
Transportation routes |
en |
dc.subject.other |
Computer simulation |
en |
dc.title |
Calibration methods for simulation-based Dynamic Traffic Assignment systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2316/Journal.205.2011.3.205-5510 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2316/Journal.205.2011.3.205-5510 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Dynamic Traffic Assignment (DTA) integrates complex transportation demand and network supply simulation models to estimate prevailing traffic conditions, predict future network performance and generate consistent, anticipatory route guidance. Prior to deployment, the DTA's parameters and inputs must be calibrated to accurately reflect travel behaviour and traffic dynamics. This paper presents a unified framework for off-line and on-line DTA calibration. Off-line calibration simultaneously estimates demand and supply model parameters. On-line calibration jointly updates - in real-time - the off-line estimates in order to more accurately capture current conditions. The developed methods are flexible and can be applied to any simulation model and may utilize any available traffic surveillance information (including Automated Vehicle Identification systems, probe vehicles and other emerging data sources). The off-line and on-line components complement each other to efficiently combine historical and real-time information. The calibration approaches are demonstrated with DynaMIT (Dynamic network assignment for the Management of Information to Travelers), using time-varying count, speed and density data from conventional traffic sensors. |
en |
heal.journalName |
International Journal of Modelling and Simulation |
en |
dc.identifier.doi |
10.2316/Journal.205.2011.3.205-5510 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
227 |
en |
dc.identifier.epage |
233 |
en |