dc.contributor.author | Marias, K | en |
dc.contributor.author | Dionysiou, D | en |
dc.contributor.author | Sakkalis, V | en |
dc.contributor.author | Graf, N | en |
dc.contributor.author | Bohle, RM | en |
dc.contributor.author | Coveney, P | en |
dc.contributor.author | Wan, S | en |
dc.contributor.author | Folarin, A | en |
dc.contributor.author | Buchler, P | en |
dc.contributor.author | Reyes, M | en |
dc.contributor.author | Clapworthy, G | en |
dc.contributor.author | Liu, E | en |
dc.contributor.author | Sabczynski, J | en |
dc.contributor.author | Bily, T | en |
dc.contributor.author | Roniotis, A | en |
dc.contributor.author | Tsiknakis, M | en |
dc.contributor.author | Kolokotroni, E | en |
dc.contributor.author | Giatili, S | en |
dc.contributor.author | Veith, C | en |
dc.contributor.author | Messe, E | en |
dc.contributor.author | Stenzhorn, H | en |
dc.contributor.author | Kim, Y-J | en |
dc.contributor.author | Zasada, S | en |
dc.contributor.author | Haidar, AN | en |
dc.contributor.author | May, C | en |
dc.contributor.author | Bauer, S | en |
dc.contributor.author | Wang, T | en |
dc.contributor.author | Zhao, Y | en |
dc.contributor.author | Karasek, M | en |
dc.contributor.author | Grewer, R | en |
dc.contributor.author | Franz, A | en |
dc.contributor.author | Stamatakos, G | en |
dc.date.accessioned | 2014-03-01T02:01:53Z | |
dc.date.available | 2014-03-01T02:01:53Z | |
dc.date.issued | 2011 | en |
dc.identifier.issn | 20428898 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/29260 | |
dc.subject | Brain cancer | en |
dc.subject | Cancer modelling | en |
dc.subject | Lung cancer | en |
dc.subject | Predictive oncology | en |
dc.title | Clinically driven design of multi-scale cancer models: The ContraCancrum project paradigm | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1098/rsfs.2010.0037 | en |
heal.identifier.secondary | http://dx.doi.org/10.1098/rsfs.2010.0037 | en |
heal.publicationDate | 2011 | en |
heal.abstract | The challenge of modelling cancer presents a major opportunity to improve our ability to reduce mortality from malignant neoplasms, improve treatments and meet the demands associated with the individualization of care needs. This is the central motivation behind the ContraCancrum project. By developing integrated multi-scale cancer models, ContraCancrum is expected to contribute to the advancement of in silico oncology through the optimization of cancer treatment in the patient-individualized context by simulating the response to various therapeutic regimens. The aim of the present paper is to describe a novel paradigm for designing clinically driven multi-scale cancer modelling by bringing together basic science and information technology modules. In addition, the integration of the multi-scale tumour modelling components has led to novel concepts of personalized clinical decision support in the context of predictive oncology, as is also discussed in the paper. Since clinical adaptation is an inelastic prerequisite, a long-term clinical adaptation procedure of the models has been initiated for two tumour types, namely non-small cell lung cancer and glioblastoma multiforme; its current status is briefly summarized. © 2011 The Royal Society. | en |
heal.journalName | Interface Focus | en |
dc.identifier.doi | 10.1098/rsfs.2010.0037 | en |
dc.identifier.volume | 1 | en |
dc.identifier.issue | 3 | en |
dc.identifier.spage | 450 | en |
dc.identifier.epage | 461 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |