dc.contributor.author |
Saez-Rodriguez, J |
en |
dc.contributor.author |
Alexopoulos, LG |
en |
dc.contributor.author |
Zhang, MS |
en |
dc.contributor.author |
Morris, MK |
en |
dc.contributor.author |
Lauffenburger, DA |
en |
dc.contributor.author |
Sorger, PK |
en |
dc.date.accessioned |
2014-03-01T02:01:53Z |
|
dc.date.available |
2014-03-01T02:01:53Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
00085472 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29262 |
|
dc.subject.other |
4 (2 aminoethylamino) 1,8 dimethylimidazo[1,2 a]quinoxaline |
en |
dc.subject.other |
epidermal growth factor |
en |
dc.subject.other |
epidermal growth factor receptor |
en |
dc.subject.other |
glycogen synthase kinase 3 |
en |
dc.subject.other |
heat shock protein 27 |
en |
dc.subject.other |
I kappa B kinase inhibitor |
en |
dc.subject.other |
immunoglobulin enhancer binding protein |
en |
dc.subject.other |
insulin |
en |
dc.subject.other |
insulin receptor substrate |
en |
dc.subject.other |
interleukin 1alpha |
en |
dc.subject.other |
interleukin 6 |
en |
dc.subject.other |
Janus kinase |
en |
dc.subject.other |
mammalian target of rapamycin |
en |
dc.subject.other |
mitogen activated protein kinase |
en |
dc.subject.other |
phosphatidylinositol 3 kinase inhibitor |
en |
dc.subject.other |
protein kinase B |
en |
dc.subject.other |
protein p85 |
en |
dc.subject.other |
Ras protein |
en |
dc.subject.other |
STAT protein |
en |
dc.subject.other |
transforming growth factor alpha |
en |
dc.subject.other |
tumor necrosis factor alpha |
en |
dc.subject.other |
article |
en |
dc.subject.other |
cancer cell culture |
en |
dc.subject.other |
cell transformation |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
down regulation |
en |
dc.subject.other |
enzyme activation |
en |
dc.subject.other |
enzyme activity |
en |
dc.subject.other |
human |
en |
dc.subject.other |
human cell |
en |
dc.subject.other |
information science |
en |
dc.subject.other |
liver cell |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
prior knowledge network |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
protein degradation |
en |
dc.subject.other |
protein localization |
en |
dc.subject.other |
protein phosphorylation |
en |
dc.subject.other |
protein protein interaction |
en |
dc.subject.other |
signal transduction |
en |
dc.subject.other |
statistical analysis |
en |
dc.subject.other |
upregulation |
en |
dc.subject.other |
Cell Line, Transformed |
en |
dc.subject.other |
Cell Line, Tumor |
en |
dc.subject.other |
Hepatocytes |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Models, Biological |
en |
dc.subject.other |
Signal Transduction |
en |
dc.title |
Comparing signaling networks between normal and transformed hepatocytes using discrete logical models |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1158/0008-5472.CAN-10-4453 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1158/0008-5472.CAN-10-4453 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Substantial effort in recent years has been devoted to constructing and analyzing large-scale gene and protein networks on the basis of ""omic"" data and literature mining. These interaction graphs provide valuable insight into the topologies of complex biological networks but are rarely context specific and cannot be used to predict the responses of cell signaling proteins to specific ligands or drugs. Conversely, traditional approaches to analyzing cell signaling are narrow in scope and cannot easily make use of network-level data. Here, we combine network analysis and functional experimentation by using a hybrid approach in which graphs are converted into simple mathematical models that can be trained against biochemical data. Specifically, we created Boolean logic models of immediate-early signaling in liver cells by training a literature-based prior knowledge network against biochemical data obtained from primary human hepatocytes and 4 hepatocellular carcinoma cell lines exposed to combinations of cytokines and small-molecule kinase inhibitors. Distinct families of models were recovered for each cell type, and these families clustered topologically into normal and diseased sets. ©2011 AACR. |
en |
heal.journalName |
Cancer Research |
en |
dc.identifier.doi |
10.1158/0008-5472.CAN-10-4453 |
en |
dc.identifier.volume |
71 |
en |
dc.identifier.issue |
16 |
en |
dc.identifier.spage |
5400 |
en |
dc.identifier.epage |
5411 |
en |