dc.contributor.author |
Caroni, C |
en |
dc.date.accessioned |
2014-03-01T02:01:55Z |
|
dc.date.available |
2014-03-01T02:01:55Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
09731377 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29269 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-79957869851&partnerID=40&md5=1abe144a92e27ebbaeadaf9e442edcde |
en |
dc.subject |
Cox model |
en |
dc.subject |
Current status |
en |
dc.subject |
Interval censoring |
en |
dc.subject |
Lifetime data |
en |
dc.subject |
Software |
en |
dc.subject.other |
Cox model |
en |
dc.subject.other |
Current status |
en |
dc.subject.other |
Interval censoring |
en |
dc.subject.other |
Lifetime data |
en |
dc.subject.other |
Software |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Variational techniques |
en |
dc.title |
Cox regression for interval censored and current status data |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In many cases, lifetime data are recorded as interval censored or in the form of current status data. It is important to have appropriate methods for analysing such data. This paper reviews the present possibilities for applying Cox's semi-parametric proportional hazards regression model to interval censored or current status data. The use of several R routines is illustrated by analysing a set of medical data in different ways. Further development of computing capabilities is important. © 2011 by IJAMAS, CESER Publications. |
en |
heal.journalName |
International Journal of Applied Mathematics and Statistics |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
SUPPL. I-11A |
en |
dc.identifier.spage |
125 |
en |
dc.identifier.epage |
132 |
en |