dc.contributor.author |
Gordji, ME |
en |
dc.contributor.author |
Kamyar, M |
en |
dc.contributor.author |
Rassias, ThM |
en |
dc.date.accessioned |
2014-03-01T02:02:09Z |
|
dc.date.available |
2014-03-01T02:02:09Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
10853375 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29296 |
|
dc.title |
General cubic-quartic functional equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/2011/463164 |
en |
heal.identifier.secondary |
463164 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/2011/463164 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We obtain the general solution and the generalized Hyers-Ulam stability of the general cubic-quartic functional equation for fixed integers k with k≠0,±1: f(x +ky)+f(x-ky)= k2 (f(x +y)+f(x-y))+2(1- k2)f(x) + ((k4 - k2)/4)(f(2y)-8f(y)) + f∼(2x)-16f∼ (x), where f∼(x):=f(x)+f(-x). Copyright © 2011 M. Eshaghi Gordji et al. |
en |
heal.journalName |
Abstract and Applied Analysis |
en |
dc.identifier.doi |
10.1155/2011/463164 |
en |
dc.identifier.volume |
2011 |
en |