dc.contributor.author |
Papadopoulos, CI |
en |
dc.contributor.author |
Efstathiou, EE |
en |
dc.contributor.author |
Nikolakopoulos, PG |
en |
dc.contributor.author |
Kaiktsis, L |
en |
dc.date.accessioned |
2014-03-01T02:02:11Z |
|
dc.date.available |
2014-03-01T02:02:11Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
07424787 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29297 |
|
dc.subject |
3-D micro-thrust bearings |
en |
dc.subject |
multi-objective optimization |
en |
dc.subject |
Navier-Stokes equations |
en |
dc.subject |
rectangular texturing |
en |
dc.subject.other |
3-D micro-thrust bearings |
en |
dc.subject.other |
Bearing convergence ratio |
en |
dc.subject.other |
Bearing loads |
en |
dc.subject.other |
CFD codes |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Convergence ratio |
en |
dc.subject.other |
Design variables |
en |
dc.subject.other |
Friction coefficients |
en |
dc.subject.other |
Geometry optimization |
en |
dc.subject.other |
Isothermal flows |
en |
dc.subject.other |
Load carrying capacities |
en |
dc.subject.other |
Micro thrust |
en |
dc.subject.other |
Multi objective |
en |
dc.subject.other |
Numerical solution |
en |
dc.subject.other |
Optimal solutions |
en |
dc.subject.other |
Optimal values |
en |
dc.subject.other |
Optimization goals |
en |
dc.subject.other |
Optimization procedures |
en |
dc.subject.other |
Optimization studies |
en |
dc.subject.other |
Optimization tools |
en |
dc.subject.other |
Pareto dominance |
en |
dc.subject.other |
rectangular texturing |
en |
dc.subject.other |
Single objective optimization |
en |
dc.subject.other |
Surface-texturing |
en |
dc.subject.other |
Bearing capacity |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Friction |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Load limits |
en |
dc.subject.other |
Multiobjective optimization |
en |
dc.subject.other |
Navier Stokes equations |
en |
dc.subject.other |
Optimal systems |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Viscous flow |
en |
dc.subject.other |
Thrust bearings |
en |
dc.title |
Geometry optimization of textured three-dimensional micro-thrust bearings |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1115/1.4004990 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1115/1.4004990 |
en |
heal.identifier.secondary |
041702 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
This paper presents an optimization study of the geometry of three-dimensional micro-thrust bearings in a wide range of convergence ratios. The optimization goal is the maximization of the bearing load carrying capacity. The bearings are modeled as micro-channels, consisting of a smooth moving wall (rotor), and a stationary wall (stator) with partial periodic rectangular texturing. The flow field is calculated from the numerical solution of the Navier-Stokes equations for incompressible isothermal flow; processing of the results yields the bearing load capacity and friction coefficient. The geometry of the textured channel is defined parametrically for several width-to-length ratios. Optimal texturing geometries are obtained by utilizing an optimization tool based on genetic algorithms, which is coupled to the CFD code. Here, the design variables define the bearing geometry and convergence ratio. To minimize the computational cost, a multi-objective approach is proposed, consisting in the simultaneous maximization of the load carrying capacity and minimization of the bearing convergence ratio. The optimal solutions, identified based on the concept of Pareto dominance, are equivalent to those of single-objective optimization problems for different convergence ratio values. The present results demonstrate that the characteristics of the optimal texturing patterns depend strongly on both the convergence ratio and the width-to-length ratio. Further, the optimal load carrying capacity increases at increasing convergence ratio, up to an optimal value, identified by the optimization procedure. Finally, proper surface texturing provides substantial load carrying capacity even for parallel or slightly diverging bearings. Based on the present results, we propose simple formulas for the design of textured micro-thrust bearings. © 2011 American Society of Mechanical Engineers. |
en |
heal.journalName |
Journal of Tribology |
en |
dc.identifier.doi |
10.1115/1.4004990 |
en |
dc.identifier.volume |
133 |
en |
dc.identifier.issue |
4 |
en |