dc.contributor.author |
Kourkoulis, R |
en |
dc.contributor.author |
Gelagoti, F |
en |
dc.contributor.author |
Anastasopoulos, I |
en |
dc.contributor.author |
Gazetas, G |
en |
dc.date.accessioned |
2014-03-01T02:02:19Z |
|
dc.date.available |
2014-03-01T02:02:19Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
10900241 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29303 |
|
dc.subject |
Field tests |
en |
dc.subject |
Pile groups |
en |
dc.subject |
Simplified method |
en |
dc.subject |
Slope stability |
en |
dc.subject |
Soil-structure interaction |
en |
dc.subject |
Validation against experiments |
en |
dc.subject.other |
Analysis and design |
en |
dc.subject.other |
Analytical techniques |
en |
dc.subject.other |
Computationally efficient |
en |
dc.subject.other |
Degree of conservatism |
en |
dc.subject.other |
Field test |
en |
dc.subject.other |
Finite-element |
en |
dc.subject.other |
Fully-coupled |
en |
dc.subject.other |
Hybrid method |
en |
dc.subject.other |
Lateral capacity |
en |
dc.subject.other |
Non-linear FE |
en |
dc.subject.other |
Parametric analysis |
en |
dc.subject.other |
Pile configuration |
en |
dc.subject.other |
Pile groups |
en |
dc.subject.other |
Resisting forces |
en |
dc.subject.other |
Simplified method |
en |
dc.subject.other |
Slope geometry |
en |
dc.subject.other |
Slope stabilization |
en |
dc.subject.other |
Stabilizing piles |
en |
dc.subject.other |
Theoretical result |
en |
dc.subject.other |
Three-dimensional (3D) |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Safety factor |
en |
dc.subject.other |
Slope stability |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Piles |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
experimental design |
en |
dc.subject.other |
field method |
en |
dc.subject.other |
finite element method |
en |
dc.subject.other |
model validation |
en |
dc.subject.other |
pile group |
en |
dc.subject.other |
slope stability |
en |
dc.subject.other |
soil-structure interaction |
en |
dc.subject.other |
three-dimensional modeling |
en |
dc.title |
Hybrid Method for Analysis and Design of Slope Stabilizing Piles |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)GT.1943-5606.0000546 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000546 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Piles are extensively used as a means of slope stabilization. Despite the rapid advances in computing and software power, the design of such piles may still include a high degree of conservatism, stemming from the use of simplified, easy-to-apply methodologies. This paper develops a hybrid method for designing slope-stabilizing piles, combining the accuracy of rigorous three-dimensional (3D) finiteelement (FE) simulation with the simplicity of widely accepted analytical techniques. It consists of two steps: (1) evaluation of the lateral resisting force (RF) needed to increase the safety factor of the precarious slope to the desired value, and (2) estimation of the optimum pile configuration that offers the required RF for a prescribed deformation level. The first step utilizes the results of conventional slope-stability analysis. A novel approach is proposed for the second step. This consists of decoupling the slope geometry from the computation of pile lateral capacity, which allows numerical simulation of only a limited region of soil around the piles. A comprehensive validation is presented against published experimental, field, and theoretical results from fully coupled 3D nonlinear FE analyses. The proposed method provides a useful, computationally efficient tool for parametric analyses and design of slope-stabilizing piles. © 2012 American Society of Civil Engineers. |
en |
heal.journalName |
Journal of Geotechnical and Geoenvironmental Engineering |
en |
dc.identifier.doi |
10.1061/(ASCE)GT.1943-5606.0000546 |
en |
dc.identifier.volume |
138 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
14 |
en |