HEAL DSpace

Investigation of hyperspectral remote sensing for mapping asphalt road conditions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Andreou, C en
dc.contributor.author Karathanassi, V en
dc.contributor.author Kolokoussis, P en
dc.date.accessioned 2014-03-01T02:02:20Z
dc.date.available 2014-03-01T02:02:20Z
dc.date.issued 2011 en
dc.identifier.issn 01431161 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29310
dc.subject.other Asphalt roads en
dc.subject.other Compact airborne spectrographic imager en
dc.subject.other Grey-level co-occurrence matrixes en
dc.subject.other High quality en
dc.subject.other HyperSpectral en
dc.subject.other Hyperspectral Data en
dc.subject.other Hyperspectral remote sensing en
dc.subject.other ISODATA en
dc.subject.other Material quality en
dc.subject.other Processing method en
dc.subject.other Radiometer data en
dc.subject.other Self organizing en
dc.subject.other Spectral angle mappers en
dc.subject.other Spectral libraries en
dc.subject.other Spectral measurement en
dc.subject.other Spectral signature en
dc.subject.other Supervised classification en
dc.subject.other Texture measurement en
dc.subject.other Thresholding en
dc.subject.other Unsupervised classification en
dc.subject.other Asphalt en
dc.subject.other Linear transformations en
dc.subject.other Mapping en
dc.subject.other Metadata en
dc.subject.other Quality control en
dc.subject.other Radiometers en
dc.subject.other Radiometry en
dc.subject.other Remote sensing en
dc.subject.other Roads and streets en
dc.subject.other Space optics en
dc.subject.other Principal component analysis en
dc.subject.other asphalt en
dc.subject.other image analysis en
dc.subject.other mapping en
dc.subject.other principal component analysis en
dc.subject.other radiometer en
dc.subject.other remote sensing en
dc.subject.other road en
dc.subject.other spectral analysis en
dc.title Investigation of hyperspectral remote sensing for mapping asphalt road conditions en
heal.type journalArticle en
heal.identifier.primary 10.1080/01431161.2010.508799 en
heal.identifier.secondary http://dx.doi.org/10.1080/01431161.2010.508799 en
heal.publicationDate 2011 en
heal.abstract An investigation of hyperspectral remote sensing for mapping asphalt road conditions is undertaken in this study. Hyperspectral data acquired by the GER1500 radiometer and the Compact Airborne Spectrographic Imager (CASI) 550 sensor have been analysed, processed and interpreted. Field radiometer data were used to provide high-quality spectral measurements for developing a spectral library for asphalt, defining potential categories of the asphalt condition and minimizing the dimension of the hyperspectral space. Analysis of spectral signatures indicated that asphalt condition is affected by asphalt age, material quality and road circulation, and that it led to the definition of five potential categories. Two of them indicate asphalt in high distress and surfaces that need rehabilitation. Among several others, the following processing methods were revealed as the most suitable for detecting asphalt condition: Principal Component Analysis (PCA), thresholding of colour transformation images, unsupervised classification Iterative Self-organizing Data Analysis (IsoData), supervised classification Spectral Angle Mapper (SAM) and texture measurements using the Grey-level Co-occurrence Matrix operator. The results indicated that hyperspectral remote sensing is capable of mapping asphalt road conditions with respect to the categorization proposed within this study. © 2011 Taylor & Francis. en
heal.journalName International Journal of Remote Sensing en
dc.identifier.doi 10.1080/01431161.2010.508799 en
dc.identifier.volume 32 en
dc.identifier.issue 21 en
dc.identifier.spage 6315 en
dc.identifier.epage 6333 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής