HEAL DSpace

Lumping analysis for the prediction of long-time dynamics: From monomolecular reaction systems to inherent structure dynamics of glassy materials

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lempesis, N en
dc.contributor.author Tsalikis, DG en
dc.contributor.author Boulougouris, GC en
dc.contributor.author Theodorou, DN en
dc.date.accessioned 2014-03-01T02:02:24Z
dc.date.available 2014-03-01T02:02:24Z
dc.date.issued 2011 en
dc.identifier.issn 00219606 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29316
dc.subject.other Computational costs en
dc.subject.other Discrete dynamical systems en
dc.subject.other First-order kinetic reaction en
dc.subject.other Glassy materials en
dc.subject.other Global optimum en
dc.subject.other High-dimensional en
dc.subject.other Inherent structures en
dc.subject.other Lennard-Jones mixtures en
dc.subject.other Limiting equilibrium en
dc.subject.other Local minimums en
dc.subject.other Long-time dynamics en
dc.subject.other Lumped system en
dc.subject.other Master equations en
dc.subject.other Molecular dynamics trajectories en
dc.subject.other Monomolecular reactions en
dc.subject.other Monte Carlo Simulation en
dc.subject.other Original systems en
dc.subject.other Plot analysis en
dc.subject.other Reduction process en
dc.subject.other Singular values en
dc.subject.other Slow dynamics en
dc.subject.other Algorithms en
dc.subject.other Computer simulation en
dc.subject.other Dynamical systems en
dc.subject.other Molecular dynamics en
dc.subject.other Monte Carlo methods en
dc.subject.other Probability distributions en
dc.subject.other Rate constants en
dc.subject.other Reaction kinetics en
dc.subject.other Dynamics en
dc.title Lumping analysis for the prediction of long-time dynamics: From monomolecular reaction systems to inherent structure dynamics of glassy materials en
heal.type journalArticle en
heal.identifier.primary 10.1063/1.3663207 en
heal.identifier.secondary http://dx.doi.org/10.1063/1.3663207 en
heal.identifier.secondary 204507 en
heal.publicationDate 2011 en
heal.abstract In this work we develop, test, and implement a methodology that is able to perform, in an automated manner, lumping of a high-dimensional, discrete dynamical system onto a lower-dimensional space. Our aim is to develop an algorithm which, without any assumption about the nature of the systems slow dynamics, is able to reproduce accurately the long-time dynamics with minimal loss of information. Both the original and the lumped systems conform to master equations, related via the lumping analysis introduced by Wei and Kuo Ind. Eng. Chem. Fundam. 8, 114 (1969), and have the same limiting equilibrium probability distribution. The proposed method can be used in a variety of processes that can be modeled via a first order kinetic reaction scheme. Lumping affords great savings in the computational cost and reveals the characteristic times governing the slow dynamics of the system. Our goal is to approach the best lumping scheme with respect to three criteria, in order for the lumped system to be able to fully describe the long-time dynamics of the original system. The criteria used are: (a) the lumping error arising from the reduction process; (b) a measure of the magnitude of singular values associated with long-time evolution of the lumped system; and (c) the size of the lumped system. The search for the optimum lumping proceeds via Monte Carlo simulation based on the Wang-Landau scheme, which enables us to overcome entrapment in local minima in the above criteria and therefore increases the probability of encountering the global optimum. The developed algorithm is implemented to reproduce the long-time dynamics of a glassy binary Lennard-Jones mixture based on the idea of inherent structures, where the rate constants for transitions between inherent structures have been evaluated via hazard plot analysis of a properly designed ensemble of molecular dynamics trajectories. © 2011 American Institute of Physics. en
heal.journalName Journal of Chemical Physics en
dc.identifier.doi 10.1063/1.3663207 en
dc.identifier.volume 135 en
dc.identifier.issue 20 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής