dc.contributor.author |
Polyrakis, IA |
en |
dc.contributor.author |
Xanthos, F |
en |
dc.date.accessioned |
2014-03-01T02:02:25Z |
|
dc.date.available |
2014-03-01T02:02:25Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
16142446 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29318 |
|
dc.subject |
Completion by options |
en |
dc.subject |
Positive bases |
en |
dc.subject |
Replication of options |
en |
dc.subject |
Security markets |
en |
dc.subject |
Sublattices |
en |
dc.title |
Maximal submarkets that replicate any option |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10436-009-0143-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10436-009-0143-9 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this article we study the replication of options in security markets X with a finite number of states. Specifically, we study the existence of maximal submarkets (subspaces) Y of X so that any option written on the elements of Y is replicated by a marketed asset x of X. So inside these subspaces the pricing problem is simple because any option is priced by the replicating portfolio. Using the theory of lattice-subspaces and positive bases developed by Polyrakis (Trans Am Math Soc 348:2793-2810, 1996; 351:4183-4203, 1999), we identify the set of all maximal replicated subspaces. In particular, for any maximal replicated subspace we determine a positive basis of the subspace. Moreover we show that the union of all maximal replicated subspaces is the set of all marketed securities x ε X so that any option written on x is replicated. So we determine also the set of securities with replicated options. © 2009 Springer-Verlag. |
en |
heal.journalName |
Annals of Finance |
en |
dc.identifier.doi |
10.1007/s10436-009-0143-9 |
en |
dc.identifier.volume |
7 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
407 |
en |
dc.identifier.epage |
423 |
en |