dc.contributor.author |
Spiliotis, K |
en |
dc.contributor.author |
Russo, L |
en |
dc.contributor.author |
Siettos, CI |
en |
dc.date.accessioned |
2014-03-01T02:02:56Z |
|
dc.date.available |
2014-03-01T02:02:56Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
19749791 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29329 |
|
dc.subject.other |
Bifurcation analysis |
en |
dc.subject.other |
Bifurcation diagram |
en |
dc.subject.other |
Closed form |
en |
dc.subject.other |
Coarse-grained |
en |
dc.subject.other |
Connectivity distribution |
en |
dc.subject.other |
Equation-Free |
en |
dc.subject.other |
Macro scale |
en |
dc.subject.other |
Macroscopic dynamics |
en |
dc.subject.other |
Macroscopic model |
en |
dc.subject.other |
Majority rule |
en |
dc.subject.other |
Majority rule models |
en |
dc.subject.other |
Neuronal model |
en |
dc.subject.other |
Random graphs |
en |
dc.subject.other |
Small worlds |
en |
dc.subject.other |
Switching probability |
en |
dc.subject.other |
Symmetry-breaking |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Probability distributions |
en |
dc.subject.other |
Stochastic models |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.title |
Micro to macro equation-free bifurcation analysis of neuronal random graphs: Symmetry breaking of majority rule dynamics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3303/CET1124059 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3303/CET1124059 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We address how the Equation-Free approach can be exploited to bridge in a computational rigorous way the micro to macro scales of the dynamics of stochastic individualistic neuronal models evolving on complex random graphs. In particular, we show how bifurcation analysis can be performed bypassing the need to extract macroscopic models in a closed form. The analysis targets on the majority rule model developing on Regular Random (RRN), Erdos-Renyi, and Watts-Strogatz (small-world) networks. We construct the coarse-grained bifurcation diagrams with respect to the switching probability and we show how the connectivity distribution may result to symmetry breaking of the underlying macroscopic dynamics. © 2011, AIDIC Servizi S.r.l. |
en |
heal.journalName |
Chemical Engineering Transactions |
en |
dc.identifier.doi |
10.3303/CET1124059 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.spage |
349 |
en |
dc.identifier.epage |
354 |
en |