dc.contributor.author |
Matsis, VM |
en |
dc.contributor.author |
Grigoropoulou, HP |
en |
dc.date.accessioned |
2014-03-01T02:02:59Z |
|
dc.date.available |
2014-03-01T02:02:59Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
01496395 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29336 |
|
dc.subject |
Activated carbon |
en |
dc.subject |
Adsorption |
en |
dc.subject |
Aqueous phase |
en |
dc.subject |
N-butyl mercaptan |
en |
dc.subject.other |
Acid base |
en |
dc.subject.other |
Aqueous phase |
en |
dc.subject.other |
Carbon surface |
en |
dc.subject.other |
Energy value |
en |
dc.subject.other |
Langmuir isotherm |
en |
dc.subject.other |
Langmuirs |
en |
dc.subject.other |
Meso-pores |
en |
dc.subject.other |
Micropores |
en |
dc.subject.other |
N-butyl mercaptan |
en |
dc.subject.other |
Oxidation-reduction reaction |
en |
dc.subject.other |
Van der waals |
en |
dc.subject.other |
Activated carbon |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Dissolved oxygen |
en |
dc.subject.other |
Hydrogen bonds |
en |
dc.subject.other |
Isotherms |
en |
dc.subject.other |
Microporosity |
en |
dc.subject.other |
Sulfur |
en |
dc.subject.other |
Surface reactions |
en |
dc.subject.other |
Van der Waals forces |
en |
dc.subject.other |
Gas adsorption |
en |
dc.title |
N-butyl mercaptan adsorption on activated carbon in aqueous phase |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/01496395.2011.591647 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/01496395.2011.591647 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Adsorption of aqueous n-butyl mercaptan on Granular/Powder Activated Carbon is studied at pH 5-12.4 and 301 K/313 K. In GAC mercaptan blocks micropores and mesopores, whereas in PAC the broader mesopores remain intact providing access to micropores. Mercaptan is transformed into isomer disulfides and non-extractable sulfur forms following acid-base or oxidationreduction reaction depending on carbon surface groups and iron, and dissolved oxygen. Adsorption obeys a Langmuir isotherm, with oxygen competing with mercaptan (<100 mg mercaptan/L), followed by a Dubinin-Raduschkevich isotherm. Mercaptan uptake increases with temperature. Free energy values suggest that the Langmuir part represents hydrogen bonds whereas the Dubinin-Raduschkevic part the van der Waals ones. © Taylor & Francis Group, LLC. |
en |
heal.journalName |
Separation Science and Technology |
en |
dc.identifier.doi |
10.1080/01496395.2011.591647 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.issue |
13 |
en |
dc.identifier.spage |
2004 |
en |
dc.identifier.epage |
2021 |
en |