dc.contributor.author |
Jebelean, P |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T02:03:03Z |
|
dc.date.available |
2014-03-01T02:03:03Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
12303429 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29343 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-84855858263&partnerID=40&md5=c0e6ffae2024296a544a4ec6a74a263e |
en |
dc.subject |
Local linking |
en |
dc.subject |
p-superlinear potential |
en |
dc.subject |
PS and C conditions |
en |
dc.subject |
Second deformation theorem |
en |
dc.subject |
Vvector p-Laplacian |
en |
dc.title |
On noncoercive periodic systems with vector p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We consider nonlinear periodic systems driven by the vector p-Laplacian. An existence and a multiplicity theorem are proved. In the existence theorem the potential function is p-superlinear, but in general does not satisfy the AR-condition. In the multiplicity theorem the problem is strongly resonant with respect to the principal eigenvalue λ0 = 0. In both of the cases the Euler-Lagrange functional is noncoercive and the method is variational. © 2011 Juliusz Schauder University Centre for Nonlinear Studies. |
en |
heal.journalName |
Topological Methods in Nonlinear Analysis |
en |
dc.identifier.volume |
38 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
249 |
en |
dc.identifier.epage |
263 |
en |