HEAL DSpace

On the perspectives opened by right angle crossing drawings

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Angelini, P en
dc.contributor.author Cittadini, L en
dc.contributor.author di Battista, G en
dc.contributor.author Didimo, W en
dc.contributor.author Frati, F en
dc.contributor.author Kaufmann, M en
dc.contributor.author Symvonis, A en
dc.date.accessioned 2014-03-01T02:03:04Z
dc.date.available 2014-03-01T02:03:04Z
dc.date.issued 2011 en
dc.identifier.issn 15261719 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29344
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-79960725810&partnerID=40&md5=2b5d46ccff05c2f91b5009100d3d657e en
dc.title On the perspectives opened by right angle crossing drawings en
heal.type journalArticle en
heal.publicationDate 2011 en
heal.abstract Right Angle Crossing (RAC) drawings are polyline drawings where each crossing forms four right angles. RAC drawings have been introduced because cognitive experiments provided evidence that increasing the number of crossings does not decrease the readability of a drawing if edges cross at right angles. We investigate to what extent RAC drawings can help in overcoming the limitations of widely adopted planar graph drawing conventions, providing both positive and negative results. First, we prove that there exist acyclic planar digraphs not admitting any straight-line upward RAC drawing and that the corresponding decision problem is NP-hard. Also, we show digraphs whose straight-line upward RAC drawings require exponential area. Exploiting the techniques introduced for studying straight-line upward RAC drawings, we also show that there exist planar undirected graphs requiring quadratic area in any straight-line RAC drawing. Second, we study whether RAC drawings allow us to draw boundeddegree graphs with lower curve complexity than the one required by more constrained drawing conventions. We prove that every graph with vertexdegree at most six (at most three) admits a RAC drawing with curve complexity two (resp. one) and with quadratic area. Third, we consider a natural non-planar generalization of planar embedded graphs. Here we give bounds for curve complexity and area different from the ones known for planar embeddings. en
heal.journalName Journal of Graph Algorithms and Applications en
dc.identifier.volume 15 en
dc.identifier.issue 1 en
dc.identifier.spage 53 en
dc.identifier.epage 78 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής