HEAL DSpace

Small and large displacement dynamic analysis of frame structures based on hysteretic beam elements

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Triantafyllou, S en
dc.contributor.author Koumousis, V en
dc.date.accessioned 2014-03-01T02:04:07Z
dc.date.available 2014-03-01T02:04:07Z
dc.date.issued 2011 en
dc.identifier.issn 07339399 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29386
dc.subject Bouc-Wen hysteretic models en
dc.subject Dynamic analysis of structures en
dc.subject Large displacement analysis en
dc.subject Material nonlinearities en
dc.subject.other Axial deformations en
dc.subject.other Beam elements en
dc.subject.other Bouc-Wen hysteretic model en
dc.subject.other Constant coefficients en
dc.subject.other Elastic beam en
dc.subject.other Elasto-plastic en
dc.subject.other Euler-Bernoulli en
dc.subject.other Evolution equations en
dc.subject.other Frame structure en
dc.subject.other Governing equations en
dc.subject.other Kinematic hardening en
dc.subject.other Large displacements en
dc.subject.other Linear Interpolation en
dc.subject.other Material nonlinearities en
dc.subject.other Non-linear dynamic analysis en
dc.subject.other Numerical results en
dc.subject.other Principle of virtual work en
dc.subject.other State-space en
dc.subject.other Stiffness equations en
dc.subject.other Control nonlinearities en
dc.subject.other Equations of motion en
dc.subject.other Hysteresis en
dc.subject.other Mechanics en
dc.subject.other Nonlinear equations en
dc.subject.other Numerical methods en
dc.subject.other Structural frames en
dc.subject.other Stiffness en
dc.subject.other curvature en
dc.subject.other deformation en
dc.subject.other dynamic analysis en
dc.subject.other elastoplasticity en
dc.subject.other hysteresis en
dc.subject.other interpolation en
dc.subject.other kinematics en
dc.subject.other numerical method en
dc.subject.other stiffness en
dc.title Small and large displacement dynamic analysis of frame structures based on hysteretic beam elements en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)EM.1943-7889.0000306 en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000306 en
heal.publicationDate 2011 en
heal.abstract In this work, a beam element is proposed for the nonlinear dynamic analysis of frame structures. The classical Euler-Bernoulli formulation for the elastic beam is extended by implicitly defining new hysteretic degrees of freedom, subjected to evolution equations of the Bouc-Wen type with kinematic hardening. A linear interpolation field is employed for these new degrees of freedom, which are regarded as hysteretic curvatures and hysteretic axial deformations. By means of the principle of virtual work, an elastoplastic hysteretic stiffness relation is derived, which together with the hysteretic evolution equations fully describes the behavior of the element. The elemental stiffness equations are assembled to form a system of linear global equations of motion that also depend on the introduced hysteretic variables. The solution is obtained by simultaneously solving the entire set of governing equations, namely the linear global equations of motion with constant coefficient matrices, and the nonlinear local constitutive equations for every element converted into a state-space form. Numerical results are presented to demonstrate the efficiency of the method as compared to existing methods. © 2012 American Society of Civil Engineers. en
heal.journalName Journal of Engineering Mechanics en
dc.identifier.doi 10.1061/(ASCE)EM.1943-7889.0000306 en
dc.identifier.volume 138 en
dc.identifier.issue 1 en
dc.identifier.spage 36 en
dc.identifier.epage 49 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής