dc.contributor.author |
Triantafyllou, S |
en |
dc.contributor.author |
Koumousis, V |
en |
dc.date.accessioned |
2014-03-01T02:04:07Z |
|
dc.date.available |
2014-03-01T02:04:07Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
07339399 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29386 |
|
dc.subject |
Bouc-Wen hysteretic models |
en |
dc.subject |
Dynamic analysis of structures |
en |
dc.subject |
Large displacement analysis |
en |
dc.subject |
Material nonlinearities |
en |
dc.subject.other |
Axial deformations |
en |
dc.subject.other |
Beam elements |
en |
dc.subject.other |
Bouc-Wen hysteretic model |
en |
dc.subject.other |
Constant coefficients |
en |
dc.subject.other |
Elastic beam |
en |
dc.subject.other |
Elasto-plastic |
en |
dc.subject.other |
Euler-Bernoulli |
en |
dc.subject.other |
Evolution equations |
en |
dc.subject.other |
Frame structure |
en |
dc.subject.other |
Governing equations |
en |
dc.subject.other |
Kinematic hardening |
en |
dc.subject.other |
Large displacements |
en |
dc.subject.other |
Linear Interpolation |
en |
dc.subject.other |
Material nonlinearities |
en |
dc.subject.other |
Non-linear dynamic analysis |
en |
dc.subject.other |
Numerical results |
en |
dc.subject.other |
Principle of virtual work |
en |
dc.subject.other |
State-space |
en |
dc.subject.other |
Stiffness equations |
en |
dc.subject.other |
Control nonlinearities |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Hysteresis |
en |
dc.subject.other |
Mechanics |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Structural frames |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
curvature |
en |
dc.subject.other |
deformation |
en |
dc.subject.other |
dynamic analysis |
en |
dc.subject.other |
elastoplasticity |
en |
dc.subject.other |
hysteresis |
en |
dc.subject.other |
interpolation |
en |
dc.subject.other |
kinematics |
en |
dc.subject.other |
numerical method |
en |
dc.subject.other |
stiffness |
en |
dc.title |
Small and large displacement dynamic analysis of frame structures based on hysteretic beam elements |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)EM.1943-7889.0000306 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000306 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this work, a beam element is proposed for the nonlinear dynamic analysis of frame structures. The classical Euler-Bernoulli formulation for the elastic beam is extended by implicitly defining new hysteretic degrees of freedom, subjected to evolution equations of the Bouc-Wen type with kinematic hardening. A linear interpolation field is employed for these new degrees of freedom, which are regarded as hysteretic curvatures and hysteretic axial deformations. By means of the principle of virtual work, an elastoplastic hysteretic stiffness relation is derived, which together with the hysteretic evolution equations fully describes the behavior of the element. The elemental stiffness equations are assembled to form a system of linear global equations of motion that also depend on the introduced hysteretic variables. The solution is obtained by simultaneously solving the entire set of governing equations, namely the linear global equations of motion with constant coefficient matrices, and the nonlinear local constitutive equations for every element converted into a state-space form. Numerical results are presented to demonstrate the efficiency of the method as compared to existing methods. © 2012 American Society of Civil Engineers. |
en |
heal.journalName |
Journal of Engineering Mechanics |
en |
dc.identifier.doi |
10.1061/(ASCE)EM.1943-7889.0000306 |
en |
dc.identifier.volume |
138 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
36 |
en |
dc.identifier.epage |
49 |
en |