dc.contributor.author |
Pourpasha, MM |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.contributor.author |
Saadati, R |
en |
dc.contributor.author |
Vaezpour, SM |
en |
dc.date.accessioned |
2014-03-01T02:04:14Z |
|
dc.date.available |
2014-03-01T02:04:14Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1024123X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29410 |
|
dc.subject.other |
Fixed point methods |
en |
dc.subject.other |
Functional equation |
en |
dc.subject.other |
Banach spaces |
en |
dc.subject.other |
Vector spaces |
en |
dc.subject.other |
Differential equations |
en |
dc.title |
The stability of some differential equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/2011/128479 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/2011/128479 |
en |
heal.identifier.secondary |
128479 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We generalize the results obtained by Jun and Min (2009) and use fixed point method to obtain the stability of the functional equation f(x+θ(y))=F[f(x),f(y)], for a class of functions of a vector space into a Banach space where is an involution. Then we obtain the stability of the differential equations of the form y ′ =F[q(x),P(x)y(x)]. Copyright © 2011 M. M. Pourpasha et al. |
en |
heal.journalName |
Mathematical Problems in Engineering |
en |
dc.identifier.doi |
10.1155/2011/128479 |
en |
dc.identifier.volume |
2011 |
en |