HEAL DSpace

Differential histomechanical response of carotid artery in relation to species and region: mathematical description accounting for elastin and collagen anisotropy

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sokolis, DP en
dc.contributor.author Sassani, S en
dc.contributor.author Kritharis, EP en
dc.contributor.author Tsangaris, S en
dc.date.accessioned 2014-03-01T02:04:28Z
dc.date.available 2014-03-01T02:04:28Z
dc.date.issued 2011 en
dc.identifier.issn 0140-0118 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29436
dc.subject Constitutive law en
dc.subject Elastin orthotropy en
dc.subject Inflation/extension en
dc.subject Structure-function relation en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Biomedical en
dc.subject.classification Mathematical & Computational Biology en
dc.subject.classification Medical Informatics en
dc.subject.other STRAIN-ENERGY FUNCTION en
dc.subject.other MECHANICAL-PROPERTIES en
dc.subject.other THORACIC AORTA en
dc.subject.other WALL en
dc.subject.other BEHAVIOR en
dc.subject.other MEDIA en
dc.subject.other MODEL en
dc.subject.other MICROSTRUCTURE en
dc.subject.other ORGANIZATION en
dc.subject.other ADVENTITIA en
dc.title Differential histomechanical response of carotid artery in relation to species and region: mathematical description accounting for elastin and collagen anisotropy en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2011 en
heal.abstract The selection of a mathematical descriptor for the passive arterial mechanical behavior has been long debated in the literature and customarily constrained by lack of pertinent data on the underlying microstructure. Our objective was to analyze the response of carotid artery subjected to inflation/extension with phenomenological and microstructure-based candidate strain-energy functions (SEFs), according to species (rabbit vs. pig) and region (proximal vs. distal). Histological variations among segments were examined, aiming to explicitly relate them with the differential material response. The Fung-type model could not capture the biphasic response alone. Combining a neo-Hookean with a two-fiber family term alleviated this restraint, but force data were poorly captured, while consideration of low-stress anisotropy via a quadratic term allowed improved simulation of both pressure and force data. The best fitting was achieved with the quadratic and Fung-type or four-fiber family SEF. The latter simulated more closely than the two-fiber family the high-stress response, being structurally justified for all artery types, whereas the quadratic term was justified for transitional and muscular arteries exhibiting notable elastin anisotropy. Diagonally arranged fibers were associated with pericellular medial collagen, and circumferentially and longitudinally arranged fibers with medial and adventitial collagen bundles, evidenced by the significant correlations of SEF parameters with quantitative histology. en
heal.publisher SPRINGER HEIDELBERG en
heal.journalName MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING en
dc.identifier.isi ISI:000292937700003 en
dc.identifier.volume 49 en
dc.identifier.issue 8 en
dc.identifier.spage 867 en
dc.identifier.epage 879 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής