dc.contributor.author | Stavrakakis, NM | en |
dc.contributor.author | Stylianou, AN | en |
dc.date.accessioned | 2014-03-01T02:04:29Z | |
dc.date.available | 2014-03-01T02:04:29Z | |
dc.date.issued | 2011 | en |
dc.identifier.issn | 0893-4983 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/29446 | |
dc.subject.other | WEAK SOLUTIONS | en |
dc.subject.other | EVOLUTION EQUATION | en |
dc.subject.other | NONLINEARITIES | en |
dc.subject.other | CONTINUITY | en |
dc.title | GLOBAL ATTRACTOR FOR SOME WAVE EQUATIONS OF p- AND p(x)-LAPLACIAN TYPE | en |
heal.type | journalArticle | en |
heal.language | English | en |
heal.publicationDate | 2011 | en |
heal.abstract | We study the existence of solutions for the equation u(tt) - Delta(p(x))u - Delta u(t) + g(u) = f(x,t), x is an element of Omega (bounded) subset of R-n, t > 0 in both the isotropic case (p(x) equivalent to p, a constant) and the anisotropic case (p(x) a measurable function). Furthermore, in the isotropic case we obtain results concerning the asymptotic behavior of solutions. Since uniqueness for this type of problem seems rather difficult, a method implementing generalized semiflows is being used to prove the existence of a global attractor in the phase space W-0(1,p)(Omega) x L-2(Omega), when p >= n. | en |
heal.publisher | KHAYYAM PUBL CO INC | en |
heal.journalName | DIFFERENTIAL AND INTEGRAL EQUATIONS | en |
dc.identifier.isi | ISI:000285799600007 | en |
dc.identifier.volume | 24 | en |
dc.identifier.issue | 1-2 | en |
dc.identifier.spage | 159 | en |
dc.identifier.epage | 176 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |