dc.contributor.author |
Cho, YJ |
en |
dc.contributor.author |
Park, C |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.contributor.author |
Saadati, R |
en |
dc.date.accessioned |
2014-03-01T02:04:30Z |
|
dc.date.available |
2014-03-01T02:04:30Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1521-1398 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29449 |
|
dc.subject |
additive mapping |
en |
dc.subject |
quadratic mapping |
en |
dc.subject |
functional equation associated with inner product space |
en |
dc.subject |
generalized Hyers-Ulam stability |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.subject.other |
STABILITY |
en |
dc.subject.other |
MAPPINGS |
en |
dc.subject.other |
ULAM |
en |
dc.title |
INNER PRODUCT SPACES AND FUNCTIONAL EQUATIONS |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In [7], Th.M. Rassias introduced the following equality Sigma(n)(i,j=1) parallel to x(i) - x(j)parallel to(2) = 2n Sigma(n)(i=1) parallel to x(i)parallel to(2), Sigma(n)(i=1) x(i)=0 for a fixed integer n >= 3. Let V IV be real vector spaces. In this paper, we show that, if a mapping f : V -> W satisfies Sigma(n)(i,j=1) f(x(i) - x(j)) = 2n Sigma(n)(i=1) f(x(i)) for all x(1), ... , x(n) is an element of V with Sigma(n)(i=1) x(i)=0, then the mapping f: V -> W is realized as the sum of an additive mapping and a quadratic mapping. Furthermore, we prove the generalized Hyers-Ulam stability of the functional equation (0.1) in real Banach spaces. |
en |
heal.publisher |
EUDOXUS PRESS, LLC |
en |
heal.journalName |
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS |
en |
dc.identifier.isi |
ISI:000288575900009 |
en |
dc.identifier.volume |
13 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
296 |
en |
dc.identifier.epage |
304 |
en |