dc.contributor.author | Gordji, ME | en |
dc.contributor.author | Rassias, TM | en |
dc.date.accessioned | 2014-03-01T02:07:08Z | |
dc.date.available | 2014-03-01T02:07:08Z | |
dc.date.issued | 2011 | en |
dc.identifier.issn | 1454-9069 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/29519 | |
dc.subject | Ternary homomorphism | en |
dc.subject | Ternary C*-algebra | en |
dc.subject.classification | Multidisciplinary Sciences | en |
dc.subject.other | ULAM-RASSIAS STABILITY | en |
dc.subject.other | FUNCTIONAL-EQUATION | en |
dc.subject.other | ADDITIVE MAPPINGS | en |
dc.subject.other | BANACH-SPACES | en |
dc.title | TERNARY HOMOMORPHISMS BETWEEN UNITAL TERNARY C*-ALGEBRAS | en |
heal.type | journalArticle | en |
heal.language | English | en |
heal.publicationDate | 2011 | en |
heal.abstract | Let A, B be two unital ternary C*-algebras. We prove that every almost unital almost linear mapping h:A -> B which satisfies h([3(n)u3(n)vy](A)) = [h(3(n)u)h(3(n)v)h(y)](B) for all u, v is an element of U(A), all y is an element of A, and all n = 0,1,2, ... , is a ternary homomorphism. Also, for a unital ternary C*-algebra A of real rank zero, every almost unital almost linear continuous mapping h:A -> B is a ternary homomorphism when h([3(n)u3(n)vy](A)) = [h(3(n)u)h(3(n)v)h(y)](B) holds for all u, v is an element of I-1(A(Sa)), all y is an element of A, and all n = 0,1,2, ... . Furthermore, we investigate the Hyers-Ulam-Rassias stability of ternary homomorphisms between unital ternary C*-algebras. | en |
heal.publisher | EDITURA ACAD ROMANE | en |
heal.journalName | PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | en |
dc.identifier.isi | ISI:000295898200004 | en |
dc.identifier.volume | 12 | en |
dc.identifier.issue | 3 | en |
dc.identifier.spage | 189 | en |
dc.identifier.epage | 196 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |