dc.contributor.author |
Kyritsi, ST |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T02:07:13Z |
|
dc.date.available |
2014-03-01T02:07:13Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
05328721 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29529 |
|
dc.subject |
Bifurcation-type theorem |
en |
dc.subject |
Local minimizers |
en |
dc.subject |
Nonlinear maximum principle |
en |
dc.subject |
Nonlinear regularity |
en |
dc.subject |
P-laplacian |
en |
dc.subject |
Positive solution |
en |
dc.title |
A bifurcation-type result for nonlinear Neumann eigenvalue problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1619/fesi.55.1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1619/fesi.55.1 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We consider a nonlinear Neumann eigenvalue problem driven by the p-Laplacian and with a (p-1)-sublinear reaction. Using variational methods together with suitable truncation techniques, we prove a bifurcation-type theorem for the eigenvalue problem. Namely, we show that there is a critical parameter value λ* > 0 such that for all λ > λ* the problem has at least two positive solutions, for λ= λ* there is at least one positive solution and for λ ∈ (0; λ*) no positive solutions exist. |
en |
heal.journalName |
Funkcialaj Ekvacioj |
en |
dc.identifier.doi |
10.1619/fesi.55.1 |
en |
dc.identifier.volume |
55 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
15 |
en |