HEAL DSpace

A detailed numerical treatment of the boundary conditions imposed by the skull on a diffusion-reaction model of glioma tumor growth. Clinical validation aspects

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Giatili, SG en
dc.contributor.author Stamatakos, GS en
dc.date.accessioned 2014-03-01T02:07:15Z
dc.date.available 2014-03-01T02:07:15Z
dc.date.issued 2012 en
dc.identifier.issn 00963003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29533
dc.subject Boundary conditions en
dc.subject Diffusion en
dc.subject Glioblastoma multiforme en
dc.subject Glioma en
dc.subject In silico oncology en
dc.subject Multiscale cancer modeling en
dc.subject.other Active field en
dc.subject.other Biological phenomena en
dc.subject.other Biological problems en
dc.subject.other Biomedical research en
dc.subject.other Boundary geometry en
dc.subject.other Brain-imaging data en
dc.subject.other Computational problem en
dc.subject.other Conjugate gradient en
dc.subject.other Crank-Nicolson en
dc.subject.other Diffusion-reaction en
dc.subject.other Diffusion-reaction model en
dc.subject.other Diffusive behavior en
dc.subject.other Diffusive growth en
dc.subject.other Glioblastoma multiforme en
dc.subject.other Glioma en
dc.subject.other Macroscopic behaviors en
dc.subject.other Mathematical treatments en
dc.subject.other Multiscales en
dc.subject.other Neumann boundary condition en
dc.subject.other Numerical experimentations en
dc.subject.other Numerical formulation en
dc.subject.other Numerical solution en
dc.subject.other Numerical treatments en
dc.subject.other Tumor growth en
dc.subject.other Boundary conditions en
dc.subject.other Conjugate gradient method en
dc.subject.other Diffusion en
dc.subject.other Tumors en
dc.title A detailed numerical treatment of the boundary conditions imposed by the skull on a diffusion-reaction model of glioma tumor growth. Clinical validation aspects en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.amc.2012.02.036 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.amc.2012.02.036 en
heal.publicationDate 2012 en
heal.abstract The study of the diffusive behavior of glioma tumor growth is an active field of biomedical research with considerable therapeutic implications. An important aspect of the corresponding computational problem is the mathematical handling of boundary conditions. This paper aims at providing an explicit and thorough numerical formulation of the adiabatic Neumann boundary conditions imposed by the skull on the diffusive growth of gliomas and in particular on glioblastoma multiforme (GBM). Additionally, a detailed exposition of the numerical solution process for a homogeneous approximation of glioma invasion using the Crank-Nicolson technique in conjunction with the Conjugate Gradient system solver is provided. The entire mathematical and numerical treatment is also in principle applicable to mathematically similar physical, chemical and biological phenomena. A comparison of the numerical solution for the special case of pure diffusion in the absence of boundary conditions or equivalently in the presence of adiabatic boundaries placed in infinity with its analytical counterpart is presented. Numerical simulations for various adiabatic boundary geometries and non zero net tumor growth rate support the validity of the corresponding mathematical treatment. Through numerical experimentation on a set of real brain imaging data, a simulated tumor has shown to satisfy the expected macroscopic behavior of glioblastoma multiforme including the adiabatic behavior of the skull. The paper concludes with a number of remarks pertaining to both the biological problem addressed and the more generic diffusion-reaction context. © 2011 Elsevier Inc. All rights reserved. en
heal.journalName Applied Mathematics and Computation en
dc.identifier.doi 10.1016/j.amc.2012.02.036 en
dc.identifier.volume 218 en
dc.identifier.issue 17 en
dc.identifier.spage 8779 en
dc.identifier.epage 8799 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής